В основу классификации промышленных электроустановок положены номинальное напряжение электроустановки (до 1 кВ и выше 1 кВ) и режим её нейтрали. По режиму нейтрали трехфазные электрические сети подразделяются на сети с заземленной нейтралью и сети с изолированной нейтралью.
Согласно Правилам устройства электроустановок (ПУЭ) все производственные помещения по опасности поражения электрическим током делятся на классы:
Помещения без повышенной опасности, характеризующиеся отсутствием признаков повышенной и особой опасности.
Помещения с повышенной опасностью, характеризующиеся наличием одного из следующих факторов (признаков):
сырость, когда относительная влажность превышает 75%;
высокая температура воздуха, превышающая 35оС;
токопроводящая пыль;
токопроводящие полы;
возможность одновременного прикосновения к имеющим соединение с землей металлоконструкциям зданий, технологическим аппаратам, механизмам и т.п., с одной стороны, и к металлическим корпусам электроприемников, с другой стороны.
Особо опасные помещения, характеризующиеся наличием одного из условий:
особая сырость, когда относительная влажность воздуха близка к 100%;
химически активная среда, когда содержащиеся в воздухе пары действуют разрушающе на изоляцию и токоведущие части оборудования;
два или более признаков одновременно, свойственных помещениям с повышенной опасностью.
Данная классификация учитывается при выборе производственного оборудования, электроустройств, электроинструмента, допустимого напряжения, защитных приспособлений, а также при разработке мероприятий по профилактике электротравматизма.
Промышленные электроприемники по надежности электроснабжения делятся на категории.
|
Электроприемники особой группы при внезапном отключении представляют наибольшую опасность для жизни людей. В целях повышения надежности их работы предусматривается третий независимый источник электроснабжения.
- Особая группа электроприемников: Бесперебойная работа электроприемника необходима для безаварийного останова производства в целях предотвращения угрозы жизни людей, взрывов, пожаров и повреждения дорогостоящего основного оборудования - Электроприемники I категории: Электроприемники, перерыв электроснабжения которых может повлечь за собой опасность для жизни людей, значительный ущерб народному хозяйству, повреждение дорогостоящего основного оборудования, массовый брак продукции, расстройство сложного технологического процесса
- Электроприемники II категории: Электроприемники, перерыв электроснабжения которых приводит к массовым простоям рабочих, механизмов и промышленного транспорта.
- Электроприемники III категории Все основные электроприемники, не подходящие под определения I и II категории.
На практике возможно замыкание электрической цепи через тело человека, при прикосновении одновременно к двум проводам (двухфазное прикосновение) или к одному проводу (однофазное прикосновение) Двухфазное прикосновение к сети наиболее опасно. При этом ток, проходящий через тело человека по одному из самых опасных для организма путей (рука – рука), зависит от прилагаемого к телу человека напряжения.
При двухфазном прикосновении ток, проходящий через тело человека, практически не зависит от режима нейтрали сети. Следовательно, двухфазное прикосновение одинаково опасно как в сети с изолированной, так и с заземленной нейтралью (при условии равенства линейных напряжений этих сетей). Случаи двухфазного прикосновения человека сравнительно редки и наблюдаются обычно в электроустановках напряжения до 1000 В.
|
Однофазное прикосновение наблюдается чаще, чем двухфазное, но менее опасно, поскольку напряжение, под которым оказывается человек, не превышает фазного, и соответственно сила тока, проходящего через человека, меньше, чем при двухфазном прикосновении. Кроме того, сила тока в значительной степени зависит от режима нейтрали, сопротивления изоляции проводов относительно земли, сопротивления пола (или основания), на котором стоит человек, и от других факторов.
В сети с изолированной нейтралью при нормальном режиме эксплуатации электрической сети образуется цепь поражения тело-пол-земля-сопротивление изоляции проводов.
Сопротивление тела человека принято принимать равным Rч =1000 Ом. Электрическое сопротивление обуви зависит от материала подошвы, влажности помещения и приложенного напряжения, а сопротивление опорной поверхности пола зависит от материала и степени его влажности.
В сетях с заземленной нейтралью при нормальном режиме эксплуатации электрической сети (рис. 17а) при однофазном прикосновении человека к корпусу оборудования, находящегося под напряжением, образуется цепь поражения тело-пол-земля-заземление нейтрали.
В аварийном режиме эксплуатации электрической сети один из проводов может оказаться замкнутым на землю. Ток, проходящий через человека, прикоснувшегося к исправной фазе, определяется зависимостью:
|
Iч = Uпр/(Rч+Rз) (26)
Замыкание одной из фазы на землю резко повышает опасность однофазного прикосновения, т.к. в этом случае человек попадает под напряжение, близкое к линейному.
Шаговое напряжение. Кроме рассмотренных выше случаев возможное включение человека в электрическую сеть с напряжением прикосновения при так называемом шаговом напряжении, которое возникает в результате появления потенциалов?х на поверхности земли, обусловлено растеканием тока замыкания Iз на землю.
Причиной появления этих потенциалов является замыкание токоведущих частей на заземленный корпус, при падении электрического провода на землю и т.п. Условия поражения человека напряжением прикосновения и напряжением шага различны, так как ток протекает по разным путям: через руку - грудную клетку - ногу – от напряжения прикосновения и по нижней петле через ноги человека – от напряжения шага.
Величина потенциала и характер растекания тока на поверхности земли зависят в основном от электрических свойств и однородности грунта, формы заземлителей и силы тока. На рис.18 показано распределение потенциалов в зоне растекания тока. Для упрощения анализа и получения расчетных зависимостей делаются допущения, что ток растекается через одиночный заземлитель, грунт изотропный и удельное сопротивление грунта? во много раз превышает удельное сопротивление материала заземлителя.
Распределение потенциала на поверхности земли?х может быть определено по выражению
Для принятых допущений потенциал на поверхности грунта распределяется по закону гиперболы. Напряжение прикосновения – это напряжение между двумя точками цепи тока замыкания на землю (корпус) при одновременном прикосновении к ним человека. Численно оно равно разности потенциалов корпуса и точек почвы, в которых находятся ноги человека..
Напряжение шага – это напряжение между точками земли (А и Б), имеющими разные потенциалы на расстоянии шага человека (в расчетах принимается а=0,8 м).
Тема: Меры защиты при эксплуатации электроустановок
В зависимости от вида электроустановки, номинального напряжения, режима нейтрали, условий среды помещения необходимо применять определен ный комплекс защитных мер. Для обеспечения электробезопасности применяют отдельно или в сочетании один с другим следующие технические способы и средства защиты: применение малых напряжений; электрическое разделение сетей; контроль и профилактика качества изоляции; защита от случайного прикосновения к токоведущим частям; защитное заземление; зануление; защитное отключение; применение электрозащитных средств.
Применение защитных мер регламентируется Правилами устройств электроустановок (ПУЭ), Правилами технической эксплуатации электроустановок потребителей (ПТЭ), Правилами техники безопасности при эксплуатации электроустановок потребителей (ПТБ). Применение малых напряжений. Малое напряжение – номинальное напряжение не более 42 В. Если номинальное напряжение электроустановки не превышает длительно допустимой величины напряжения прикосновения, то даже одновременный контакт человека с токоведущими частями разных фаз или полюсов безопасен.
В особо опасных (по опасности поражения электрическим током) и взрывоопасных помещениях для повышения безопасности применяются малые напряжения 12 и 36 В.
В помещениях с повышенной опасностью для переносных электроприемников рекомендуется номинальное напряжение 36 В. В особо опасных помещениях для ручного электроинструмента устанавливается напряжение 36 В, а для ручных светильников – 12 В.
При сопротивлении тела человека 1 кОм ток, проходящий через тело человека с напряжением 36 В, равен Iч =36 мА, а с 12 В - Iч =12 мА.
При значении Iч =36 мА (пороговый неотпускающий ток) невозможно оторвать руки от электродов. При длительном воздействии может наступить остановка дыхания или ослабление сердечной деятельности с потерей сознания (см. табл.13), что чрезвычайно опасно для человека. Для Iч =12 мА (пороговый неотпускающий ток) сильные боли и судороги во всей руке, включая предплечье, руки трудно оторвать от электродов.
Ввиду того, что одним применением малых напряжений не достигается достаточная степень безопасности, дополнительно применяются другие меры защиты – двойная изоляция, защита от случайных прикосновений и др.
Электрическое разделение сетей. Разветвленная сеть большой протяженности имеет значительную емкость и небольшое активное сопротивление изоляции относительно земли. Ток замыкания на землю в такой сети может достигать значительной величины и представлять опасность для человека. Обычно электрическое разделение сетей осуществляется путем подключения отдельных электроприемников через разделительный трансформатор, питающийся от основной разветвленной сети.
Поскольку основная цель этой защитной меры – уменьшить величину тока замыкания на землю за счет высоких сопротивлений фаз относительно земли, то не допускается заземление нейтрали или одного из выводов вторичной обмотки разделительного трансформатора или преобразователя.
Изоляция токоведущих частей. Контроль и профилактика поврежденной изоляции. Контроль изоляции – измерение её активного или омического сопротивления для обнаружения дефектов и предупреждения замыканий на землю и коротких замыканий. Чтобы предотвратить замыкания электрической цепи на землю и другие повреждения изоляции необходимо проводить периодические испытания. Такие испытания качества изоляции приводят под повышенным напряжением и измерением сопротивления изоляции.
При испытаниях повышенным напряжением дефекты изоляции обнаруживаются в результате пробоя и последующего прожигания изоляции. Выявленные дефекты устраняются, и затем проводятся повторно испытания исправленного оборудования. Сопротивление изоляции измеряется на отключенной установке. При таком измерении можно определить сопротивление изоляции отдельных участков сети, электрических аппаратов, машин и т.п. Сопротивление изоляции каждого участка в сетях напряжением до 1000 В должно быть не ниже 0,5 МОм / 17 /.
Защита от прикосновения к токоведущим частям. Прикосновение к токоведущим частям, работающим с напряжением до 1000 В, опасно (см. п. 11.4), а при напряжении выше 1000 В опасным может быть даже приближение к токоведущим частям. Чтобы исключить возможность прикосновения или опасного приближения к изолированным токоведущим частям, необходимо обеспечить их недоступность посредством ограждения, блокировок и расположения токоведущих частей на недоступной высоте или в недоступном месте /26/.
Ограждения применяются сплошные и сетчатые с размером сетки 25х25 мм. Сплошные ограждения изготавливают в виде кожухов и крышек. Блокировки применяются в рубильниках, пускателях, автоматических выключателях и других электрических аппаратах.
Блокировки, применяемые в электроустановках, по принципу действия разделяются на электрические и механические. Электрические блокировки осуществляют разрыв цепи специальными контактами, которые устанавливаются на дверях ограждений, крышках и дверцах кожухов. Механические блокировки не позволяют открыть аппарат (снять крышку), когда он включен, и, наоборот, включить аппарат при открытой (снятой) крышке.
Расположение токоведущих частей на недоступной высоте или в недоступном месте позволяет обеспечивать безопасность без ограждений. При этом следует учитывать возможность случайного прикосновения к токоведущим частям посредством длинных предметов, которые человек может держать в руках. Если к токоведущим частям, расположенным на высоте, возможно прикосновение с мест, редко посещаемых людьми (крыш, площадок и т.п.), в этих местах должны быть установлены ограждения или приняты другие меры безопасности.
Защитное заземление применяют для устранения опасности поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования.
Следует иметь в виду, что при прохождении тока через заземляющее устройство или при обрыве провода и замыкании его на землю на поверхности земли появляется потенциал, который может представлять опасность для человека в виде шагового напряжения.
Защитному заземлению подлежат электроустановки: *
при напряжении переменного и постоянного тока 500 В и выше – во всех случаях; *
при напряжении 36 В и более переменного тока и 110 В и более постоянного тока – в помещениях с повышенной электроопасностью, особо электроопасных и в наружных установках.
Согласно ПУЭ устанавливают следующие наибольшие значения сопротивлений заземляющих устройств: для установок до 1000 В во всех случаях 4 Ом (допускается 10 Ом при мощности генераторов и трансформаторов 100 кВА и менее); для установок выше 1000 В – 0,5 Ом / 17, 20 /.
Защитное заземление следует отличать от так называемого рабочего заземления – преднамеренного соединения с землей отдельных точек электрической сети (например, нейтральной точки трансформатора или генератора и др.), необходимого для обеспечения надлежащей работы установки в нормальных и аварийных условиях.
Защитное зануление – присоединение нетоковедущих металлических частей электрооборудования, которые могут оказаться под напряжением, к неоднократному заземленному нулевому проводу питающей сети (рис.20).
Принцип действия зануления – превращение пробоя на корпус в однофазное короткое замыкание между фазным и нулевым проводами. При этом в результате протекания через токовую защиту большого тока обеспечивается быстрое отключение поврежденного участка от сети. Токовой защитой служат: 1) плавкие предохранители; 2) автоматы, устанавливаемые для защиты от токов короткого замыкания; 3) магнитные пускатели со встроенной тепловой защитой; 4) контакторы в сочетании с тепловым реле, осуществляющие защиту от перегрузки.
Согласно ПУЭ, ток однофазного короткого замыкания должен превышать не менее чем в 3 раза номинальный ток плавкой вставки предохранителя. При защите сети автоматическими включателями кратность тока для автоматов с номинальным током до 100 А следует принимать равной 1,4, для прочих – 1,25.
Сопротивление заземляющих устройств, к которым присоединены нейтрали трансформаторов или генераторов, должно быть не более 4 Ом, сопротивление повторных заземлений – не более 10 Ом Выносное и контурное заземляющее устройства. Заземляющим устройством называют совокупность заземлителя и проводника, соединяющего заземляющие части электроустановок с заземлителем. Различают два типа заземляющих устройств: выносные (или сосредоточенные) и контурные (или распределенные).
Выносное заземление делают на некотором расстоянии от заземляемых объектов. При этом производственные помещения с находящимися в них заземленными электроустановками оказываются вне зоны растекания тока в земле. Если выносное заземление расположено от заземляемых объектов на расстоянии 20 м и более, то можно считать, что пол в производственном помещении обладает нулевым потенциалом. Поэтому человек, стоящий на полу и касающийся металлического заземленного корпуса электроустановки, когда по заземляющему устройству проходит ток замыкания на землю, оказывается под полным напряжением относительно земли. При выполнении выносного заземляющего устройства величина поражающего напряжения будет зависеть от величины сопротивления растеканию тока заземляющего устройства Rз и величины тока замыкания на землю Iз.
Более эффективным и надежным по сравнению с выносным заземляющим устройством является контурное, когда заземлители располагаются по контуру вокруг заземляемого электрооборудования. При этом производственное помещение с заземленными электроустановками оказывается размещенным внутри контура заземления. Благодаря близкому расположению заземлителей относительно друг друга (3-6 м) и наложению электрического поля одного заземлителя на поле другого заземлителя, потенциалы точек пола или земли Рис.21. Схема контурного заземления электрооборудования
1, 2, 3, – см. рис.18.; 4 – элементы заземляющего устройства: а - соединительная полоса; б- одиночный стержневой заземлитель значительно повышаются, и в связи с этим напряжение между заземленными металлическими частями и полом существенно уменьшается. Иногда для лучшего выравнивания потенциалов внутри контура заземления дополнительно прокладывают горизонтальные полосы. Полученная результирующая кривая распределения потенциалов (5) (рис.21) позволяет определить значения Uпр и Uш в рассматриваемых точках нахождения человека на опорной поверхности.
Тема: Выбор и защита электрооборудования от воздействия окружающей среды
В выпускаемом промышленностью электрооборудовании учитываются климатические условия и производственные факторы, для работы в которых оно предназначено. Это выражается в конструктивных исполнениях деталей оборудования (оболочек, изоляции, покрытий и т.д.), обеспечивающих необходимую защиту его от вредного влияния окружающей среды. Климатические условия работы электрооборудования характеризуются в основном температурой, влажностью воздуха и пределами их изменения во времени. Полные характеристики климатических условий указываются в ГОСТ 15150-69. Условные обозначения «климатической защиты» и степеней защиты наносятся на табличку изделия с паспортными данными.
«Климатическая защита» охватывает широкий комплекс мер, в том числе и защиту от коррозии, обеспечивающих установленный для электротехнических изделий срок службы и надежную работу в том или ином климатическом районе. Все электрические машины и другие электротехнические изделия конструируются и выпускаются промышленностью в климатических исполнениях, предназначенных для работы в определенных макроклиматических районах на территории РФ и категории изделия в зависимости от места его установки и эксплуатации (табл. 20). Характеристика климатических исполнений имеет условные буквенные обозначения (русские и латинские) и цифры, указывающие на категорию размещения электрооборудования. Буквенные обозначения исполнения для РФ следующие: У (N) – умеренный (микроклимат); ХЛ (F)– холодный; УХЛ (NF) – умеренный и холодный; ТВ (TH) – влажный тропический и т.д.
Если для какого-либо электрооборудования указана категория размещения при эксплуатации 1, или 2, или 3, то оно может эксплуатироваться в менее жестких категориях, т.е. 2, или 3, или 4. Электроустановки, размещенные под навесами (категория 2), рассматриваются как наружные. Помещения, в которых могут эксплуатироваться изделия 3, 4 и 5-й категорий, относятся к закрытым или внутренним. Например, УХЛ 2 означает, что оборудование может эксплуатироваться в умеренном и холодном микроклимате, при температуре воздуха от +40о до –40о С и расположенное под навесом.
Закрытые помещения согласно ПУЭ делятся на электротехнические помещения, сухие, влажные, сырые, особо сырые, жаркие, пыльные, с химически активной и органической средой, пожароопасные и взрывоопасные помещения и установки (зоны).
В целях правильного выбора конструктивных типов электрооборудования применительно к условиям эксплуатации необходимо руководствоваться
В соответствии с которой и ГОСТ 14254-80 аппараты, машины и светильники характеризуются соответствующими степенями защиты от попадания внутрь оболочек посторонних тел, пыли и воды (табл. 21).
Условные обозначения степеней защиты состоят из двух букв IP (первые буквы слов International Protection), указывающих на международную систему обозначений, и двух цифр. Первая цифра означает степень защиты от соприкосновения и попадания посторонних тел; вторая цифра - от проникновения воды.
Если для изделия нет необходимости в одном виде защиты, допускается в условном обозначении проставлять знак Х вместо обозначения того вида защиты, который в данном изделии не требуется или испытания которого не проводятся, например, IP2X.
Для светильников в соответствии с ГОСТ 138282-74 помимо степеней защиты от пыли 2,5 и 6 вводятся дополнительные следующие обозначения:
2’- степень с характеристикой для степени 2 (табл. 21), но при которой светильник имеет неуплотненную светопропускающую оболочку; 5’- степень с характеристикой 5, но колба лампы при этом не защищена от воздействия пыли; 6’- степень с характеристикой 6, но колба лампы не защищена от пыли. При этих обозначениях буквенный индекс (IP) не указывается, например, 5’4 вместо IP54.
При испытаниях повышенным напряжением дефекты изоляции обнаруживаются в результате пробоя и последующего прожигания изоляции. Выявленные дефекты устраняются, и затем проводятся повторно испытания исправленного оборудования. Сопротивление изоляции измеряется на отключенной установке. При таком измерении можно определить сопротивление изоляции отдельных участков сети, электрических аппаратов, машин и т.п. Сопротивление изоляции каждого участка в сетях напряжением до 1000 В должно быть не ниже 0,5 МОм / 17 /.
Защита от прикосновения к токоведущим частям. Прикосновение к токоведущим частям, работающим с напряжением до 1000 В, опасно (см. п. 11.4), а при напряжении выше 1000 В опасным может быть даже приближение к токоведущим частям. Чтобы исключить возможность прикосновения или опасного приближения к изолированным токоведущим частям, необходимо обеспечить их недоступность посредством ограждения, блокировок и расположения токоведущих частей на недоступной высоте или в недоступном месте /26/.
Ограждения применяются сплошные и сетчатые с размером сетки 25х25 мм. Сплошные ограждения изготавливают в виде кожухов и крышек. Блокировки применяются в рубильниках, пускателях, автоматических выключателях и других электрических аппаратах.
Блокировки, применяемые в электроустановках, по принципу действия разделяются на электрические и механические. Электрические блокировки осуществляют разрыв цепи специальными контактами, которые устанавливаются на дверях ограждений, крышках и дверцах кожухов. Механические блокировки не позволяют открыть аппарат (снять крышку), когда он включен, и, наоборот, включить аппарат при открытой (снятой) крышке.
Расположение токоведущих частей на недоступной высоте или в недоступном месте позволяет обеспечивать безопасность без ограждений. При этом следует учитывать возможность случайного прикосновения к токоведущим частям посредством длинных предметов, которые человек может держать в руках. Если к токоведущим частям, расположенным на высоте, возможно прикосновение с мест, редко посещаемых людьми (крыш, площадок и т.п.), в этих местах должны быть установлены ограждения или приняты другие меры безопасности.
Защитное заземление применяют для устранения опасности поражения людей электрическим током при появлении напряжения на конструктивных частях электрооборудования, т.е.
при замыкании фазы на корпус (рис.19). Величина тока, проходящего через тело человека, определяется значением сопротивления защитного заземления и рассчитывается по формуле
Iч=, (31)
где Rзз – сопротивление защитного заземления, Ом. Рис. 19. Схема защитного заземления электрооборудования
1, 2, 3, 4 – см.рис.18.
Рис.20. Схема защитного зануления электрооборудования
Iп – номинальный ток плавкой вставки предохранителя; Iкз – ток короткого за-мыкания; Rп – сопротивление повторного заземлителя; 1, 2, 4 – см.рис.18.; 3-зануляющий провод; 5- плавкие предохранители
Следует иметь в виду, что при прохождении тока через заземляющее устройство или при обрыве провода и замыкании его на землю на поверхности земли появляется потенциал, который может представлять опасность для человека в виде шагового напряжения.
Защитному заземлению подлежат электроустановки: *
при напряжении переменного и постоянного тока 500 В и выше – во всех случаях; *
при напряжении 36 В и более переменного тока и 110 В и более постоянного тока – в помещениях с повышенной электроопасностью, особо электроопасных и в наружных установках.
Согласно ПУЭ устанавливают следующие наибольшие значения сопротивлений заземляющих устройств: для установок до 1000 В во всех случаях 4 Ом (допускается 10 Ом при мощности генераторов и трансформаторов 100 кВА и менее); для установок выше 1000 В – 0,5 Ом
Защитное заземление следует отличать от так называемого рабочего заземления – преднамеренного соединения с землей отдельных точек электрической сети (например, нейтральной точки трансформатора или генератора и др.), необходимого для обеспечения надлежащей работы установки в нормальных и аварийных условиях.
Защитное зануление – присоединение нетоковедущих металлических частей электрооборудования, которые могут оказаться под напряжением, к неоднократному заземленному нулевому проводу питающей сети (рис.20).
Принцип действия зануления – превращение пробоя на корпус в однофазное короткое замыкание между фазным и нулевым проводами. При этом в результате протекания через токовую защиту большого тока обеспечивается быстрое отключение поврежденного участка от сети. Токовой защитой служат: 1) плавкие предохранители; 2) автоматы, устанавливаемые для защиты от токов короткого замыкания; 3) магнитные пускатели со встроенной тепловой защитой; 4) контакторы в сочетании с тепловым реле, осуществляющие защиту от перегрузки.
Согласно ПУЭ, ток однофазного короткого замыкания должен превышать не менее чем в 3 раза номинальный ток плавкой вставки предохранителя. При защите сети автоматическими включателями кратность тока для автоматов с номинальным током до 100 А следует принимать равной 1,4, для прочих – 1,25.
Сопротивление заземляющих устройств, к которым присоединены нейтрали трансформаторов или генераторов, должно быть не более 4 Ом, сопротивление повторных заземлений – не более 10 Ом
Выносное и контурное заземляющее устройства. Заземляющим устройством называют совокупность заземлителя и проводника, соединяющего заземляющие части электроустановок с заземлителем. Различают два типа заземляющих устройств: выносные (или сосредоточенные) и контурные (или распределенные).
Выносное заземление делают на некотором расстоянии от заземляемых объектов. При этом производственные помещения с находящимися в них заземленными электроустановками оказываются вне зоны растекания тока в земле. Если выносное заземление расположено от заземляемых объектов на расстоянии 20 м и более, то можно считать, что пол в производственном помещении обладает нулевым потенциалом. Поэтому человек, стоящий на полу и касающийся металлического заземленного корпуса электроустановки, когда по заземляющему устройству проходит ток замыкания на землю, оказывается под полным напряжением относительно земли. При выполнении выносного заземляющего устройства величина поражающего напряжения будет зависеть от величины сопротивления растеканию тока заземляющего устройства Rз и величины тока замыкания на землю Iз.
Более эффективным и надежным по сравнению с выносным заземляющим устройством является контурное,когда заземлители (4, 5) располагаются по контуру вокруг заземляемого электрооборудования. При этом производственное помещение с заземленными электроустановками оказывается размещенным внутри контура заземления. Благодаря близкому расположению заземлителей (5) относительно друг друга (3-6 м) и наложению электрического поля одного заземлителя на поле другого заземлителя, потенциалы точек пола или земли Рис.21. Схема контурного заземления электрооборудования
1, 2, 3, – см. рис.18.; 4 – элементы заземляющего устройства: а - соединительная полоса; б- одиночный стержневой заземлитель значительно повышаются, и в связи с этим напряжение между заземленными металлическими частями и полом существенно уменьшается. Иногда для лучшего выравнивания потенциалов внутри контура заземления дополнительно прокладывают горизонтальные полосы. Полученная результирующая кривая распределения потенциалов (5) (рис.21) позволяет определить значения Uпр и Uш в рассматриваемых точках нахождения человека на опорной поверхности.
Выбор и защита электрооборудования от воздействия окружающей среды
В выпускаемом промышленностью электрооборудовании учитываются климатические условия и производственные факторы, для работы в которых оно предназначено. Это выражается в конструктивных исполнениях деталей оборудования (оболочек, изоляции, покрытий и т.д.), обеспечивающих необходимую защиту его от вредного влияния окружающей среды. Климатические условия работы электрооборудования характеризуются в основном температурой, влажностью воздуха и пределами их изменения во времени. Полные характеристики климатических условий указываются в ГОСТ 15150-69. Условные обозначения «климатической защиты» и степеней защиты наносятся на табличку изделия с паспортными данными.
«Климатическая защита» охватывает широкий комплекс мер, в том числе и защиту от коррозии, обеспечивающих установленный для электротехнических изделий срок службы и надежную работу в том или ином климатическом районе. Все электрические машины и другие электротехнические изделия конструируются и выпускаются промышленностью в климатических исполнениях, предназначенных для работы в определенных макроклиматических районах на территории РФ и категории изделия в зависимости от места его установки и эксплуатации. Характеристика климатических исполнений имеет условные буквенные обозначения (русские и латинские) и цифры, указывающие на категорию размещения электрооборудования. Буквенные обозначения исполнения для РФ следующие: У (N) – умеренный (микроклимат); ХЛ (F)– холодный; УХЛ (NF) – умеренный и холодный; ТВ (TH) – влажный тропический и т.д. / 25 /.
Если для какого-либо электрооборудования указана категория размещения при эксплуатации 1, или 2, или 3, то оно может эксплуатироваться в менее жестких категориях, т.е. 2, или 3, или 4. Электроустановки, размещенные под навесами (категория 2), рассматриваются как наружные. Помещения, в которых могут эксплуатироваться изделия 3, 4 и 5-й категорий, относятся к закрытым или внутренним. Например, УХЛ 2 означает, что оборудование может эксплуатироваться в умеренном и холодном микроклимате, при температуре воздуха от +40о до –40о С и расположенное под навесом.
Закрытые помещения согласно ПУЭ делятся на электротехнические помещения, сухие, влажные, сырые, особо сырые, жаркие, пыльные, с химически активной и органической средой, пожароопасные и взрывоопасные помещения и установки (зоны).
В целях правильного выбора конструктивных типов электрооборудования применительно к условиям эксплуатации необходимо руководствоваться системой обозначений принятой международной электротехнической комиссией (МЭК).
В соответствии с которой и ГОСТ 14254-80 аппараты, машины и светильники характеризуются соответствующими степенями защиты от попадания внутрь оболочек посторонних тел, пыли и воды.
Условные обозначения степеней защиты состоят из двух букв IP (первые буквы слов International Protection), указывающих на международную систему обозначений, и двух цифр. Первая цифра означает степень защиты от соприкосновения и попадания посторонних тел; вторая цифра - от проникновения воды.
Если для изделия нет необходимости в одном виде защиты, допускается в условном обозначении проставлять знак Х вместо обозначения того вида защиты, который в данном изделии не требуется или испытания которого не проводятся, например, IP2X.
Для светильников в соответствии с ГОСТ 138282-74 помимо степеней защиты от пыли 2,5 и 6 вводятся дополнительные следующие обозначения:
2’- степень с характеристикой для степени 2 (табл. 21), но при которой светильник имеет неуплотненную светопропускающую оболочку; 5’- степень с характеристикой 5, но колба лампы при этом не защищена от воздействия пыли; 6’- степень с характеристикой 6, но колба лампы не защищена от пыли. При этих обозначениях буквенный индекс (IP) не указывается, например, 5’4 вместо IP54.