О научно-исследовательской работе




МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ

РОССИЙСКОЙ ФЕДЕРАЦИИ

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ

ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ

ВЫСШЕГО

ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ

«Московский энергетический институт»

КАФЕДРА «Теоретической механики и мехатроники»

ОТЧЕТ

О научно-исследовательской работе

 

 

Выполнил: аспирант М.Ю. Кушнир ____________

 

Научный руководитель: И.В. Меркурьев ____________

 

Москва 2016
Введение

 

Гироско́п (от др.-греч. «круг» и «смотрю») — устройство, способное реагировать на изменение углов ориентации связанного с ним тела относительно инерциальной системы координат, как правило, основанное на законе сохранения вращательного момента (момента импульса). Термин впервые введен Жаном (Бернаром Леоном) Фуко в его докладе в 1852 году Французской Академии Наук. Доклад был посвящён способам экспериментального обнаружения вращения Земли в инерциальном пространстве. Этим обусловлено и название «гироскоп».

Гироскоп, изобретённый Фуко (построил Дюмолен-Фромент, 1852)

До изобретения гироскопа человечество использовало различные методы определения направления в пространстве. Издревле люди ориентировались визуально по удалённым предметам, в частности, по Солнцу. Уже в древности появились первые приборы: отвес и уровень, основанные на гравитации. В средние века в Китае был изобретён компас, использующий магнетизм Земли. В Европе были созданы астролябия и другие приборы, основанные на положении звёзд.

Гироскоп изобрёл Иоганн Боненбергер и опубликовал описание своего изобретения в 1817 году. Однако французский математик Пуассон ещё в 1813 году упоминает Боненбергера как изобретателя этого устройства. Главной частью гироскопа Боненбергера был вращающийся массивный шар в кардановом подвесе. В 1832 году американец Уолтер Р. Джонсон придумал гироскоп с вращающимся диском. Французский учёный Лаплас рекомендовал это устройство в учебных целях[. В 1852 году французский учёный Фуко усовершенствовал гироскоп и впервые использовал его как прибор, показывающий изменение направления (в данном случае — Земли), через год после изобретения маятника Фуко, тоже основанного на сохранении вращательного момента. Именно Фуко придумал название «гироскоп». Фуко, как и Боненбергер, использовал карданов подвес. Не позже 1853 года Фессель изобрёл другой вариант подвески гироскопа.

Преимуществом гироскопа перед более древними приборами является то, что он правильно работает в сложных условиях (плохая видимость, тряска, электромагнитные помехи). Однако гироскоп быстро останавливался из-за трения.

Во второй половине XIX века было предложено использовать электродвигатель для разгона и поддержания движения гироскопа. Впервые на практике гироскоп был применён в 1880-х годах инженером Обри для стабилизации курса торпеды. В XX веке гироскопы стали использоваться в самолётах, ракетах и подводных лодках вместо компаса или совместно с ним.

Гироскопические приборы можно классифицировать как измерительные и силовые. Силовые служат для создания моментов сил, приложенных к основанию, на котором установлен гироприбор, а измерительные предназначены для определения пара метров движения основания (измеряемыми параметрами могут быть углы поворота основания, проекции вектора угловой скорости и т.д.).

В данной работе проводится исследование измерительного гироскопа вибрационного типа.

Вибрационные гироскопы основаны на свойстве камертона, заключающегося в стремлении сохранить плоскость колебаний своих ножек. В ножке колеблющегося камертона, установленного на основании, вращающимся вокруг оси симметрии камертона, возникает периодический момент сил, частота которого равна частоте колебания ножек, а амплитуда пропорциональна угловой скорости вращения основания. Поэтому, измеряя амплитуду угла закрутки ножки камертона, можно судить об угловой скорости основания.

В данной работе рассматривается динамика микромеханического вибрационного гироскопа камертонного типа. Принципиальная смеха гироскопа состоит из абсолютно жесткой рамки, двух упругих полуколец, упругой балки и подвижного основания.

Два упругих полукольца, являющихся чувствительными элементами гироскопа крепятся к абсолютно жесткой раме симметрично относительно ее середины. Упругая балка соединяет раму с подвижным основанием

Управление и измерение колебаний стержней осуществляется с помощью электростатической системы. Ёмкостные датчики системы позволяют измерить высокочастотные колебания стержней по двум обобщённым координатам. Поперечные колебания стержней возбуждаются под действием периодических сил.

 

 


1. Построение Лагранжиана системы

 

Если задан лагранжиан системы, то с помощью вариационного исчисления можно установить, как именно будет двигаться тело, сначала получив уравнения движения, а затем решив их.

Запишем Лагранжиан системы.

 

(1.1)

 

Запишем удельную, отнесенную к единице длины осевой линии резонатора кинетическую энергию гироскопа. Она складывается из кинетической энергии полукольца и рамки:

 

 

Для того, чтобы найти абсолютную скорость движения точки полукольца в скалярном виде, нужно сначала перейти к её векторному представлению. В векторном пространстве абсолютная скорость состоит из суммы переносной и относительной скоростей.

 

(1.3)

 

Переносную скорость найдем по формуле Эйлера:

 

 

Зададимся декартовой системой координат так, чтобы начало координат располагалось посередине рамки, ось y была соосна рамке, ось x — направлена перпендикулярно, а ось z, являющаяся осью чувствительности гироскопа, — направлена на нас. Зададимся базисом . Операцию дифференцирования по координате будем обозначать штрихом, а операцию дифференцирования по времени t будем обозначать точкой.

 

(1.5)

(1.6)

 

Здесь V и W – упругие смещения элемента кольцевого резонатора в окружном и радиальном направлениях.

Итак, переносная скорость движения в разложении по данному базису есть:

 

(1.7)

 

Разложим относительную скорость движения по данному базису:

 

(1.8)

 

Теперь можем записать абсолютную скорость:

(1.9)

 

Мы нашли все неизвестные, запишем удельную кинетическую энергию:

 

(1.10)

 

Найдем удельную потенциальную энергию гироскопа. Она состоит из потенциально энергии полукольца и потенциальной энергии балки:

 

(1.11)

 

Здесь с – жесткость балки,

Далее проинтегрируем удельную кинетическую и удельную потенциальную энергию от 0 до , чтобы получить кинетическую и потенциальную энергию для полукольца и построим Лагранжиан (1.1) системы:

 

(1.12)

 

1.1 Составление уравнений движения с помощью принципа Гамильтона

 

Получим уравнения движения гироскопа, используя принцип наименьшего действия Гамильтона-Остроградского.

Действие по Гамильтону имеет вид:

(1.13)

 

Воспользуемся гипотезой о нерастяжимости срединной линии резонатора:

 

(1.14)

 

Проведем соответствующую замену переменных:

 

(1.15)

(1.16)

 

Таким образом (1.13):

 

(1.17)

 

На истинном пути действие по Гамильтону принимает стационарное значение, то есть Следовательно,

 

 

Выполним некоторые преобразования над варьируемыми переменными:

 

Выпишем интегро-дифференциальные уравнения гироскопа:

 

 

1.2 Составление уравнений движения с помощью уравнений Эйлера

 

Проведём проверку полученных уравнений движения гироскопа с помощью уравнений Эйлера

Действие по Гамильтону имеет вид

 

(1.20)

 

Подынтегральное выражение есть функция

 

Оба уравнения вариационной задачи будут выглядеть:

 

(1.21)

 

Выведем первое интегро-дифференциально уравнение гироскопа:

 

 

Таким образом, после подстановки в (1.21) получим:

 

 

Соберем все подобные слагаемые:

 

(1.22)

 

Выведем второе интегро-дифференциально уравнение гироскопа:

 

 

Таким образом, после подстановки в (1.21) получим:

 

(1.23)

 

Получили интегро-дифференциальные уравнения движения гироскопа с помощью уравнений Эйлера. Они совпадают с уравнениями (1.19), полученными с использованием принципа наименьшего действия Гамильтона-Остроградского.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-10-25 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: