Модифицированный симплекс-метод




 

В основу данной разновидности симплекс-метода положены такие особенности линейной алгебры, которые позволяют в ходе решения задачи работать с частью матрицы ограничений. Иногда метод называют методом обратной матрицы.

В процессе работы алгоритма происходит спонтанное обращение матрицы ограничений по частям, соответствующим текущим базисным векторам. Указанная способность делает весьма привлекательной машинную реализацию вычислений вследствие экономии памяти под промежуточные переменные и значительного сокращения времени счёта. Способность хороша для ситуаций, когда число переменных n значительно превышает число ограничений m.

В целом, метод отражает традиционные черты общего подхода к решению задач линейного программирования, включающего в себя канонизацию условий задачи, расчёт симплекс – разностей, проверку условий оптимальности, принятие решений о коррекции базиса и исключение Жордана – Гаусса. Особенности заключаются в наличии двух таблиц – основной и вспомогательной, порядке их заполнения и некоторой специфичности расчётных формул.

Зная оптимальный план этой задачи, на основе соотношений получаем оптимальный план исходной задачи.

Таким образом, процесс нахождения решения задачи нелинейного программирования включает следующие этапы:

1. Первоначальную задачу сводят к задаче линейного программирования.

2. Находят решение линейной задачи

Используя соотношения, определяют оптимальный план исходной задачи и находят максимальное значение целевой функции нелинейной задачи.

 

Первый этап: Получение задания к курсовой работе

1. Все числовые данные, касающиеся предполагаемых производственных и экономических процессов, берутся на основе шестизначного шифра:

9 5 5 8 7 2

Под каждую цифру записываются буквы a, b, c, d, e, f в следующем виде:

9 5 5 8 7 2

А b c d e f

из последней строки таблицы индивидуальных заданий находим столбцы соответствующие буквам a, b, c, d, e, f. Тогда числовыми данными, необходимыми для выполнения данной курсовой работы, будут данные находящиеся в а – том столбце в строке 9, b – том столбце в строке 5, c – том столбце в строке 5, d – том столбце в строке 8, e – том столбце в строке 7 и f – том столбце в строке 2.

По таблице исходных заданий для любого варианта заданий по столбцу а исполнитель получает вариант выполняемого задания. В моем случае для цифры 9 соответствует вариант 9.

На некотором заводе производится три вида продукта и при этом расходуется два вида ресурсов. Производственная функция каждого вида продукта на предприятии опишется равенствами:


 

где Сi и - постоянные величины, i = 1, 2, 3;

X1 – трудовые ресурсы в человеко-днях;

Х2 – денежно-материальные средства, в тенге;

Уi – получаемый продукт

Х1 = а1х1 + b1x2 + c1x3

Х2 = а2х1 + b2x2 + c2x3

Найти все неотрицательные базисные решения и определить оптимальный план F = y1 + y2 + y3.

Известно, что продукт для производства j – того вида затрачивается aij единиц i – того ресурса. Эти затраты даются в таблицах 3.9.1. – 3.9.10

Последующие числовые данные берутся только из таблицы исходных данных выбранного варианта задания т.е. из таблицы №3.9.11.

2. По столбцу таблицы №3.9.11 для строки 8 исходной таблицей затрат единиц ресурса, будет таблица №3.9.4 т.е. следующая таблица:

Продукты ресурсы      
I      
II      

 

3. По столбцу c – на 3 строке находим с1=6, α1=0,6

4. По столбцу d – на 5 строке определяем с2=5, α2=0,5

5. По столбцу e – по 4 строке установим, что с3=8, α3=0,4.

6. И наконец по столбцу f – в 1 строке найдем Тчел.дней =1000, Птенге = 280000

Для производства имеются трудовые ресурсы Тчел.дней и денежно-материальные средства Птенге.

Требуется найти оптимальный план выпуска продукции, при котором выпускаемый продукт будет наибольшим.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: