Звездная величина в современной науке




 

В середине XIX в. английский астроном Норман Погсон усовершенствовал метод классификации звезд по принципу светимости, существовавший со времен Гиппарха и Птолемея. Погсон учел, что разница в плане светимости между двумя классами составляет 2,5 (например, сила свечения звезды третьего класса в 2,5 раза больше, чем у звезды четвертого класса). Погсон ввел новую шкалу, по которой разница между звездами первого и шестого классов составляет 100 а 1.

 

Система, разработанная английским астрономом, позволила сохранить существующую шкалу (деление на шесть классов), но придала ей максимальную математическую точность. Сначала ноль – пунктом для системы звездных величин была выбрана Полярная звезда, ее звездная величина в соответствии с системой Птолемея была определена в 2,12. Позже, когда выяснилось, что Полярная звезда является переменной, на роль ноль – пункта были условно определенны звезды с постоянными характеристиками. По мере совершенствования технологий оборудования ученые смогли определить звездные величины с большой точностью, до десятых, а позже и до сотых единиц (например, звездная величина Денеба – 1,25, Альдебарана – 0,85, Веги – 0,04). Звезды с большой светимостью могут иметь и отрицательную звездную величину: Сириус (-1,47), Канопус (-0,72), Артуро (-0,04).

Светимость

Светимость звёзд (L) чаще выражается в единицах светимости Солнца (4x эрг/с). Звездная величина, измеренная при помощи специальных приборов, вмонтированных в телескоп (фотометрами), указывает, какое количество света звезды доходит до наблюдателя на Земле. Свет преодолевает расстояние от звезды до нас, и, соответственно, чем дальше расположена звезда, тем более слабой она кажется.

По светимости звёзды различаются в очень широких пределах. Большинство звёзд составляют "карлики", их светимость ничтожна иногда даже по сравнению с Солнцем.

То есть при определении звездной величины необходимо принимать во внимание расстояние до звезды. В данном случае речь идет об относительной звездной величине. Она зависит от расстояния.

Есть звезды очень яркие и очень слабые.

Характеристикой светимости является " абсолютная величина " звезды. Единица абсолютной температуры — кельвин (К). Есть ещё понятие "видимая звёздная величина", которая зависит от светимости звезды, цвета и расстояния до неё. В большинстве случаев используют "абсолютную величину", чтобы реально оценить размеры звёзд, независимо как далеко они находятся.

Она характеризует блеск звезды на определенном расстоянии в 10 парсек. (1 парсек = 3,26 светового года.) Для определения абсолютной звездной величины необходимо знать расстояние до звезды.

Звёзды высокой светимости имеют отрицательные значения. Например, видимая величина солнца -26,8. На расстоянии в 10ПК эта величина будет уже +5 (самые слабые звёзды, видимые невооружённым глазом, имеют величину +6).

 

Цвет звезд

 

Следующей важной характеристикой звезды является ее цвет. Рассматривая звезды даже невооруженным глазом, можно заметить, что не все они одинаковы.
Есть голубые, желтые, оранжевые, красные звезды, а не только белые. Цвет звезд многое говорит астрономам, прежде всего он зависит от температуры поверхности звезды. Красные звезды – самые холодные, их температура составляет примерно 2000-3000°С. Желтые, как наше Солнце, имеют среднюю температуру (5000-6000°С). Самые горячие – белые и голубые звезды, их температура составляет 50 000-60 000°С и выше.

 

Цвет и длина волны

 

Цвет Диапазон длин волн, А
Фиолетовый, синий 3900 - 4550
Голубой 4550 - 4920
Зеленый 4920 - 5570
Желтый 5570 - 5970
Оранжевый 5970 - 6220
Красный 6220 - 7700

 

Последовательность спектров звёзд, получающихся при непрерывном изменении их поверхностных слоёв, обозначается следующими буквами: O, B, A, F, G, K, M (от горячих к холодным). Каждый из этих классов подразделяется ещё на 10 подклассов (пример B1, B2, B3…). Четкая классификация спектрального класса звезд представлена в следующей таблице

Спектральные классы звезд

 

Обозначение класса звезд Характерный признак спектральных линий Температура поверхности, K
O Ионизованный гелий > 30 000
B Нейтральный гелий 11 000 - 30 000
A Водород 7 200 - 11 000
F Ионизованный кальций 6 000 - 7 200
G Ионизованный кальций, нейтральные металлы 5 200 - 6 000
K Нейтральные металлы 3 500 - 5200
M Нейтральные металлы, полосы поглощения молекул < 3 500
R Полосы поглощения циана (CN)2 < 3 500
N Углерод < 3 500

 

Загадочные линии

 

Если пропустить свет звезды через призму, мы получим так называемый спектр, он будет пересекаться линиями. Эти линии являются своего рода “идентификационной картой” звезды, так как по ним астрономы могут определить химический состав поверхностных слоев звезд. Линии принадлежат различным химическим элементам.

 

Сравнивая линии в звездном спектре с линиями, выполненными в лабораторных условиях, можно определить, какие химические элементы входят в состав звезды. В спектрах основными являются линии водорода и гелия, именно эти элементы составляют основную часть звезды. Но встречаются и элементы группы металлов – железо, кальций, натрий и др. В солнечном ярком спектре видны линии почти всех химических элементов.

 

Масса

Также звёзды разделяются по массе, но в более узких пределах в отличие от светимости (которая может различаться и в 1000 раз). Очень мало звёзд, имеющих массу в 10 раз больше или меньше Солнечной.

Ученые, изучая распределение звезд по массам и учитывая время жизни звезд различной массы, распределяют звезды по массам в момент их рождения.

Во многих областях Вселенной наблюдается дефицит массивных звезд. В тех областях, где молодых звезд много, звезд маленькой массы меньше. Исследователи полагают, что первые звезды были яркими, массивными и короткоживущими.

Радиус

Радиус звёзд может очень сильно отличаться, а также меняться… С появлением возможности проводить спектральный анализ, появились сведения о химическом составе звезды. По химическому составу звёзды представляют собой водородные и гелиевые плазмы, остальных элементов гораздо меньше. На 10тыс атомов водорода приходится 1000 атомов гелия, 5 атомов кислорода, 2 атома азота, 1 углерода и 0,5 железа. Других элементов ещё меньше….

Делались попытки построить теоретическую эволюцию звёзд вдоль главной последовательности на основе представлений о потери масс этими звёздами, но эти попытки оказались неудачными.

Время пребывания звёзд на главной последовательности зависит от их первоначальной массы. Чем больше излучение и масса звезды, тем скорее она израсходует свой водород.

Вращение звезд

Вращение звезд изучается по их спектрам. При вращении один край диска звезды удаляется от нас, а другой приближается с той же скоростью. В результате в спектре звезды, получающемся одновременно от всего диска, линии расширяются и, в соответствии с принципом Доплера, приобретают характерный контур, по которому возможно определять скорость вращения. Звезды ранних спектральных классов О, В, А вращаются со скоростями (на экваторе) 100-200 км/с. Скорости вращения более холодных звезд – значительно меньше (несколько км/с). Уменьшение скорости вращения звезды связано, по-видимому, с переходом части момента количества движения к окружающему её газопылевому диску вследствие действия магнитных сил. Из-за быстрого вращения звезды принимает форму сплюснутого сфероида. Излучение из звёздных недр просачивается к полюсам скорее, чем к экватору, вследствие чего температура на полюсах оказывается более высокой. Поэтому на поверхности звезды возникают меридиональные течения от полюсов к экватору, которые замыкаются в глубоких слоях звезды. Такие движения играют существенную роль в перемешивании вещества в слоях, где нет конвекции.

Рождение звезды

Согласно современным представлениям образование звезд происходит внутри облака газа и пыли. Обычно исходят из представления о том, что однородно распределенное вещество в пространстве неустойчиво и может собираться в сгустки под действием сил тяготения. Небольшие, случайно образовавшиеся сгустки плотности растут из-за гравитационной неустойчивости. Чтобы образовалась звезда необходимо сжатие некоторой области газопылевого облака до такой стадии пока она не станет достаточно плотной и горячей. В процессе такой концентрации вещества происходит увеличение температуры и давления. Возникают условия для появления звезды. По мере того, как будет происходить сжатие вещества, из которого образуется звезда, будет повышаться температура звезды. Излучение и увеличивающаяся кинетическая энергия атомов и молекул газа и пыли создает давление, препятствующее сжатию газопылевого облака. Температура и давление максимальны в центре облака и минимальны на периферии. Средняя температура звезды возрастает тем быстрее, чем быстрее она излучает энергию и сжимается. Гравитационная энергия высвобождается со скоростью, которая не только восполняет потерю энергии с поверхности звезды, но и нагревает звезду.



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-08-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: