Биологические функции белков




- Структурная (пластическая). В комплексе с липидами белки составляют структуру всех клеточных мембран и основу цитоплазмы клеток. Структурной основой соединительной ткани являются такие белки, как коллаген
(входит в состав хрящей и сухожилий), кератин (входит в состав кожи),
эластин (входит в состав связок и стенок сосудов).

- Сократительная. Все виды сокращения и движения скелетных мышц, миокарда и других сокращающихся тканей обеспечивают сократительные белки актин и миозин.

- Транспортная. Белки способны связывать и транспортировать с током крови или через клеточные мембраны отдельные молекулы и ионы. Например, гемоглобин эритроцитов крови переносит кислород от легких к тканям и углекислый газ — от тканей к легким.

- Гормональная, или регуляторная. Высокоспецифические белки-гормоны регулируют обмен веществ

- Энергетическая. Около 10—15 % энергопотребления организма обеспечивается белками. При окислении 1 г белков выделяется 17 кДж (4,1 ккал) энергии.

Аминокислоты различаются особенностями своего метаболизма и обычно подразделяются на заменимые и незаменимые.

Заменимые и незаменимые аминокислоты. Большинство аминокислот синтезируются в клетках организма в процессе обмена веществ и называются заменимыми. Непоступление их с пищей не вызывает существенных изменений в обмене веществ. Другие аминокислоты не синтезируются в организме, поэтому называются незаменимым. Эти аминокислоты обязательно должны поступать с пищей. Для взрослых людей незаменимыми являются девять аминокислот, а для детей необходима еще десятая — аргинин (суточная потребность для них варьирует в пределах
0,5-6 г).

Белки пищи, содержащие все незаменимые аминокислоты, называются полноценными. Такие белки содержатся в основном в продуктах животного происхождения и являются неотъемлемым компонентом рационального питания человека.

Расщепление белков в процессе пищеварения и всасывание аминокислот
Белки пищи в ротовой полости не расщепляются, так как слюна не содержит гидролитических ферментов.

Химическое расщепление белков начинается в желудке под воздействием протеолитических ферментов (пептидгидролаз), которые расщепляют пептидные связи между аминокислотами. Эти ферменты образуются 'КП&ткам!ГсИШ*стой оболочки желудка, тонкого кишечника и поджелудочной железы в неактивной форме. Такаяформа ферментов предотвращает самопереваривание белков в клетках, где они синтезируются, и стенок желудочно-кишечного тракта.

В желудке переваривание белков происходит при участии фермента желудочного сока пепсина, который образуется из неактивного пепсиногена под воздействием соляной кислоты. Все это облегчает процесс расщепления белков в желудке. Пепсин расщепляет пептидные связи белковых молекул, в результате чего образуются высокомолекулярные пептиды и простетические группы.

В двенадцатиперстной кишке образовавшиеся пептиды подвергаются дальнейшему расщеплению при участии ферментов сока поджелудочной железы и кишечного сока трипсина и химотрипсина. Поджелудочная железа вырабатывает неактивный фермент трипсиноген, который под действием фермента слизистой оболочки тонкого кишечника — энтерокиназы превращается в активный трипсин. Трипсин воздействует на другой неактивныи фермент поджелудочного сока — химотрипсиноген, превращая его в активный химотрипсин.

Трипсин и химотрипсин проявляют максимальную активность в слабощелочной среде при рН 7,8. Они расщепляют белки (пептиды и полипептиды) на более простые соединения - низкомолекулярные пептиды (олигопептиды) и некоторое количество свободных аминокислот.

Окончательное расщепление низкомолекулярных пептидов до аминокислот происходит в тонком кишечнике под действием высокоспецифических ферментов аминопептидаз, карбоксипептидаз и дипептидаз. Образовавшиеся свободные аминокислоты и некоторые простые пептиды при помощи сложных биохимических процессов всасываются в кровь и доставляются в печень и другие ткани.

Обмен белков при мышечной деятельности
Белки вносят незначительный вклад в энергетику мышечной деятельности,
поскольку обеспечивают только 10—15 % общего энергопотребления организма. Тем не менее они играют важную роль в обеспечении сократительной функции скелетных мышц и сердца, в формировании долговременной адаптации к физическим нагрузкам, создании определенного композиционного состава мышц. Физические нагрузки вызывают изменения в процессах синтеза и распада белков в тканях, особенно в скелетных мышцах и печени, степень выраженности которых зависит от интенсивности и длительности физических нагрузок, а также от тренированности организма.

При систематических физических нагрузках в мышцах и других тканях активируется адаптивный синтез белка, увеличивается содержание структурных и сократительных белков, а также миоглобина и многих ферментов. Это приводит к увеличению мышечной массы, поперечного сечения мышечных волокон, что рассматривается как гипертрофия мышц. Увеличение
количества ферментов создает благоприятные условия для расширения
энергетического потенциала в работающих мышцах, что, в свою очередь,
усиливает биосинтез мышечных белков после физических нагрузок и улучшает двигательные способности человека.

Нагрузки скоростного и силового характера усиливают в большей степени синтез миофибриллярных белков в мышцах, а нагрузки на выносливость — митохондриальных ферментов, обеспечивающих процессы аэробного синтеза АТФ. Тип физической нагрузки (плавание, бег) также во многом определяет величину изменений белкового синтеза.

 

 



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-30 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: