Главный водитель ритма (пейсмейкер) – клетки синусно-предсердного узла. – генерирует ритм 60-90 импульсов в минуту.




МЫШЕЧНЫЕ ТКАНИ

План лекции:

  1. Общая характеристика мышечной ткани
  2. Поперечнополосатая скелетная мышечная ткань
  3. Поперечнополосатая сердечная мышечная ткань:

а)сократительные кардиомиоциты

б)атипичные кардиомиоциты

Гладкая мышечная ткань

 

 

Миосимпласт является основным структурным компонентом мышечного волокна, как по объему, так и по выполняемым функциям. Миосимпласт состоит состоит из большого числа ядер, цитоплазмы (саркоплазмы), плазмолеммы, включений, общих и специальных органелл. Специализированные органеллы миосимпласта: 1)миофибриллы, 2)саркоплазматическая сеть, 3) канальцы Т-системы.

Миофибриллы - сократительные элементы миосимласта - в большом ко­личестве (до 1-2 тыс.) локализуются в центральной части саркоплазмы миосимпласта. Они объединяются в пучки, между которыми содержатся прослойки саркоплазмы. Между миофибриллами локализуется большое чис­ло митохондрий (саркосом). Каждая миофибрилла простирается продольно на протяжении всего миосимпласта и своими свободными концами прикрепляется к его плазмолемме у конических концов. Диаметр миофибрилл составляет 0,2-0,5 мкм

По своему строению миофибриллы неоднородны по протяжению и подразделяются на темные (анизотропные) или А-диски, и светлые (изотропные) или I-диски. Темные и светлые диски всех миофибрилл располагаются на одном уровне и обуславливают поперечную исчерченность всего мышечного волокна. Темные и светлые диски в свою очередь состоят из еще более тонких нитей - миофиламентов.

По своему строению миофибриллы неоднородны по протяжению и подразделяются на темные (анизотропные) или А-диски, и светлые (изотропные) или I-диски. Темные и светлые диски всех миофибрилл располагаются на одном уровне и обуславливают поперечную исчерченность всего мышечного волокна. Темные и светлые диски в свою очередь состоят из еще более тонких нитей - миофиламентов.

Актиновые миофиламенты посредине I-диска скрепляются белками, составляющими Z-линию, а свободными концами частично входят в А-диск между толстыми миофиламентами. При этом, вокруг одного миозинового филамента располагаются 6 актиновых.

При частичном сокращении миофибриллы актиновые миофиламенты как бы втягиваются в А-диск и в нем образуется светлая зона или Н-полоска, ограниченная свободными концами актиновых миофиламентов. Ширина Н-полоски зависит от степени сокращения миофибриллы.

Участок миофибриллы, расположенный между двумя Z-полосками носит название саркомера и является структурно-функциональной единицей миофибриллы. Саркомер включает в себя А-диск и расположенные по сторонам от него две половины I-диска. Следовательно, каждая мифибрилла представляет собой совокупность саркомеров. Именно в саркомере осуществляется процесс сокращения

Процесс сокращения осуществляется посредством взаимодействия актиновых и миозиновых филаментов и образования между ними актомиозиновых мостиков, посредством которых происходит втягивание актиновых миофиламентов в А-диск и укорочение саркомера. Для развития этого процесса необходимы три условия: 1) наличие энергии в виде АТФ; 2) наличие ионов кальция; 3) наличие биопотенциала

АТФ образуется в саркосомах (митохондриях) в большом количестве локализованных между миофибриллами. Выполнение двух последних условий осуществляется еще с помощью двух специализированных органелл – саркоплазматической сети и Т-канальцев.

Саркоплазматическая сеть представляет собой видоизмененную гладкую эндоплазматическую сеть и состоит из расширенных полостей и анастомозирующих канальцев, окружающих миофибриллы. При этом саркоплазматическая сеть подразделяется на фрагменты, окружающие отдельные саркомеры. Каждый фрагмент состоит из двух терминальных цистерн, соединенных полыми анастомозирующими канальцами – L-канальцами

В терминальных цистернах и канальцах содержатся ионы кальция, которые при поступлении нервного импульса и достижении волны деполяризации мембран саркоплазматической сети, вы­ходят из цистерн и канальцев и распределяются между актиновыми и миозиновыми миофиламентами, инициируя их взаимодействие. После прекращения волны деполяризации ионы кальция устремляются обратно в терминальные цистерны и канальцы

Волна деполяризации передается на саркоплазматическую сеть от нерв­ного окончания вначале по плазмолемме, а затем по Т-канальцам, которые не являются самостоятельными структурными элементами. Они предс­тавляют собой трубчатые впячивания плазмолеммы в саркоплазму

Под влиянием ионов кальция стимулируется АТФ-азная активность миозина, что приводят к расщеплению АТФ, с образованием АДФ и энергии. Благодаря выделившееся энергии устанавливаются мостики между актином и миозином (а конкретнее, образуются мостики между головками белка миозина и определенными точками на актиновом филаменте) и за счет укорочения этих мостиков происходит подтягивание актиновых филаментов между миозиновыми.

Затем эти связи распадаются (опять же с использованием энергии) и головки миозина образуют новые контакты с другими точками на актиновом филаменте, но расположенными дистальнее предыдущих. Так происходит постепенное втягивание актиновых филаментов между миозиновыми и укорочение саркомера. Степень этого сокращения зависит от концентрации ионов кальция вблизи миофиламентов и от содержания АТФ.

Затем эти связи распадаются (опять же с использованием энергии) и головки миозина образуют новые контакты с другими точками на актиновом филаменте, но расположенными дистальнее предыдущих. Так происходит постепенное втягивание актиновых филаментов между миозиновыми и укорочение саркомера. Степень этого сокращения зависит от концентрации ионов кальция вблизи миофиламентов и от содержания АТФ.

Волокна II типа - белые мышечные волокна - характеризуются незначительным содержанием миоглобина, но высоким содержанием гликогена, высокой активностью фосфорилазы и АТФ-азы быстрого типа. Функционально характеризуются способностью быстрого, сильного, но непродолжительного сокращения. Между двумя крайними типами мышечных волокон находятся промежуточные

Волокна II типа - белые мышечные волокна - характеризуются незначительным содержанием миоглобина, но высоким содержанием гликогена, высокой активностью фосфорилазы и АТФ-азы быстрого типа. Функционально характеризуются способностью быстрого, сильного, но непродолжительного сокращения. Между двумя крайними типами мышечных волокон находятся промежуточные

Мышца как орган – состоит из мышечных волокон, волокнистой соединительной ткани, сосудов, нервов. Мышца это анатомическое образование, основным, функционально ведущим структурным компонентом которого является мышечная ткань. Поэтому не следует рассматривать как синонимы понятия мышечная ткань и мышца.

Волокнистая соединительная ткань образует прослойки в мышце: эндомизий, перимизий, эпимизий, а также сухожилия. Эндомизий окружает каждое мышечное волокно, состоит из рыхлой волокнистой соединительной ткани и содержит кровеносные и лимфатические сосуды.

Перимизий окружает несколько мышечных волокон, собранных в пучки. В нем содержатся более крупные сосуды (артерии и вены, а также артерио-венозные анастомозы). Эпимизий или фасция окружает всю мышцу, способствует функционированию мышцы как органа.

Гистогенез скелетной поперечнополосатой мышечной ткани.

Из миотомов мезодермы в определенные участки мезенхимы выселяются малодифференцированные клетки - миобласты, часть из которых выстраивается в виде цепочки в стык друг к другу. В области контактов миобластов цитолемма исчезает и образуется симпластичесное образование - миотрубка в которой ядра в виде цепочки располагаются в середине, а по периферии начинают дифференцироваться из миофиламентсв мифибриллы.

К миотрубке подрастают нервные волокна, образуя двигательные нервные окончания. Под влиянием эфферентной нервной импульсации начинается пе­рестройка мьшечной трубки в мышечное волокно: ядра перемещаются на периферию симпласта к плазмолемме, а миофибриллы занимают его центральную часть, из гладкой ЭПС развивается саркоплазматическая сеть, окружающая каждую миофибриллу на всем ее протяжении

Плазмолемма миосимпласта образует глубокие трубчатые впячивания Т-канальцы. За счет деятельности зернистой эндоплазматической сети вначале из миобластов, а затем и мышечных труб синтезируются и выделяются с помощью пластинчатого комплекса белки и полисахариды, из которых формируется базальная пластинка мышечного волокна.

При формировании мотрубки, а затем и дифференцировки мышечного волокна часть миобластов не входит в состав симпласта, а прилежит к нему, располагаясь под базальной пластинкой. Эти клетки носят название миосателлитов и играют важную роль в процессах физиологической и репаративной регенерации.

Установлено, что закладка поперечнополосатых скелетных мышечных волокон (миогенез) происходит только в эмбриональный период. В постнатальном периоде осуществляется их дальнейшая дифференцировка и гипертрофия, но количество мышечных волокон даже в условиях интенсивной тренировки не увеличивается.

Регенерация мышечной ткани. Различают два вида регенерации - физиологическую и репаративную. Физиологическая регенерация проявляется в форме гипертрофии мышечных волокон, что выражается в увеличении их толщины и даже длины, увеличении числа органелл, главным образом миофибрилл, а также нарастании числа ядер, что в конечном счете проявляется увеличением функциональной способности мышечного волокна.

Радиоизотопным методом установлено, что увеличение числа ядер в мышечных волокнах в условиях гипертрофии достигается за счет деления клеток миосателлитов и последующего вхождения в миосимпласты дочерних клеток.

Увеличение числа миофибрилл осуществляется посредством синтеза актиновых и миозиновых белков свободными рибосомами и последующей сборки этих белков в актиновые и миозиновые миофиламенты параллельно с соответствующими филаментами саркомеров. В результате этого внача­ле происходит утолщение миофибрилл, а затем их расщепление и образование дочерних миофибрилл

Кроме того возможно образование новых актиновых и миозиновых миофиламентов не параллельно, а встык предшествующим миофибриллам, чем достигается их удлинение. Саркоплазматическая сеть и Т - канальцы в гипертрофирующимся волокне образуются за счет разрастания предшествующих элементов.

При определенных видах мышечной тренировки может формироваться преимущественно красный тип мышечных волокон (у стайеров) или белый тип мышечных волокон (у спринтеров).

Возрастная гипертрофия мышечных волокон интенсивно проявляется с началом двигательной активности организма (1-2 года), что обусловлено, прежде всего, усилением нервной стимуляции. В старческом возрасте, а также в условиях малой мышечной нагрузки, наступает атрофия специальных и общих органелл, истончение мышечных волокон и снижений их функциональной способности.

Репаративная регенерация развивается после повреждения мышечных волокон. Способ регенерации зависит от величины дефекта.

При значительных повреждениях на протяжении мышечного волокна миосателлиты в области повреждения и в прилежащих участках растормаживаются, усиленно пролиферируют, а затем мигрируют в область дефекта мышечного волокна, где выстраиваются в цепочки, формируя миотрубку

Последующая дифференцировка миотрубки приводит к восполнению дефекта и восстановлению целостности мышечного волокна.

В условиях небольшого дефекта мышечного волокна на его концах, за счет регенерации внутриклеточных органелл образуются мышечные почки, которые растут навстречу друг другу, а затем сливаются, приведя к закрытию дефекта.

Репаративная регенерация и восстановление целостности мышечных волокон осуществляется при определенных условиях: во-первых, при сохраненной двигательной иннервации из мышечных волокон; во-вторых, если в области повреждения не попадают элементы соединительной ткани (фибробласты). Иначе на месте дефекта мышечного волокна развивается соединительнотканный рубец.

Структурно-функциональной единицей является клетка – кардиомиоцит.

По строению и функциям кардиомиоциты подразделяются на две основные группы: 1) типичные или сократительные кардиомиоциты, образующие своей совокупностью миокард, 2) атипичные кардиомиоциты, составляющие проводящую систему сердца и подразделяющиеся в свою очередь на три разновидности.

Сократительный кардиомиоцит представляет собой почти прямоугольную клетку 50-120 мкм, шириной 15-20 мкм, в центре которой локали­зуется обычно одно ядро. Снаружи покрыт базальной пластинкой, в саркоплазме кардиомиоцита по периферии от ядра располагаются миофибриллы, а между ними и около ядра локализуются в большом количестве митохондрии.

В отличии от скелетной мышечной ткани, миофибриллы кардиомиоцитов представляют собой не отдельные цилиндрические образования, а по существу сеть, состоящую из анастомозирующих миофибрилл, т. к. некоторые миофиламенты как бы отщепляются от одной миофибриллы и наискось продолжаются в другую.

Кроме того, темные и светлые диски соседних миофибрилл не всегда располагаются на одном уровне, и потому поперечная исчерченность в кардиомиоцитах выражена не столь отчетливо, как в скелетных мышечных волокнах.

Саркоплазматическая сеть, охватывающая миофибриллы представлена расширенными анастомозирующими канальцами. Терминальные цистерны и триады отсутствуют. Т-канальцы имеются, но они короткие, широкие и образованы не только углублением плазмолеммы, но и базальной пластинки. Механизм сокращения в кардиомиоцитах практически не отличается от такового в скелетных мышечных волокнах.

Сократительные кардиомиоциты, соединяясь встык друг с другом, образуют функциональные мышечные волокна, между которыми имеются многочисленные анастомозы. Благодаря этому из отдельных кардиомиоцитов формируется сеть – функциональный синцитий. Наличие щелевидных контактов между кардиомиоцитами обеспечивает одновременное и содружественное их сокращение вначале в предсердиях, а затем и в же­лудочках.

Области контактов соседних кардиомиоцитов носят название вставочных дисков. Вставочные диски - это места контактов цитолемм соседних кардиомиоцитов, включающих в себя простые, десмосомные и щелевидные контакты. Обычно во вставочных: дисках различают поперечный и продольный фрагменты.

В области поперечных фрагментов имеются расширенные десмосомные соединения. В этих же местах с внутренней стороны плазмолеммы прикрепляются актиновые филаменты саркомеров. В области продольных фрагментов локализуются щелевидные контак­ты. Посредством вставочньгх дисков обеспечивается как механическая, так и метаболическая (прежде всего ионная) связь кардиомиоцитов.

Сократительные кардиомиоциты предсердий и желудочков несколько отличаются между собой по морфологии и функциям. Так, кардиомиоциты предсердий в саркоплазме содержат меньше миофибрилл и митохондрий, в них почти не выражены Т-канальцы, а вместо них под плазмолеммой выявляются в большом числе везикулы и кавеолы - аналоги Т-канальцев.

Кроме того, в саркоплазме предсердных кардиомиоцитов у полюсов ядер локализуются специфические предсердные гранулы (атриопептин, натрийуретический фактор), состоящие из гликопротеидных комплексов, выделяясь из кардимиоцитов в кровь предсердий, эти вещества влияют на уровень давления крови в сердце и сосудах, а также препятствуют образованию тромбов в предсердиях.

Вторая разновидность кардиомиоцитов – атипичные кадиомиоциты образующие проводящую систему сердца 1-синусно-предсердный узел; 2-предсердно-желудочковый узел; 3-предсердно-желудочковый ствол (пучок Гиса); 4-ножки Гиса; 5-волокна Пуркинье.

Главный водитель ритма (пейсмейкер) – клетки синусно-предсердного узла. – генерирует ритм 60-90 импульсов в минуту.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-14 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: