Точки разрыва функции
Определение точек разрыва функции и их видов является продолжением темы непрерывности функции. Наглядное (графическое) объяснение смысла точек разрыва функции даётся так же в контрасте с понятием непрерывности. Научимся находить точки разрыва функции и определять их виды. И помогут нам в этом наши верные друзья - левый и правый пределы, обобщённо называемые односторонними пределами. Если у кого-то есть страх перед односторонними пределами, то скоро развеем его.
Точки на графике, которые не соединены между собой, называются точками разрыва функции. График такой функции, терпящей разрыв в точке x=2 - - на рисунке ниже.
Обобщением вышесказанного является следующее определение. Если функция не является непрерывной в точке , то она имеет в этой точке разрыв а сама точка называется точкой разрыва. Разрывы бывают первого рода и второго рода.
Для того, чтобы определять виды (характер) точек разрыва функции нужно уверенно находить пределы. Но в связи с точками разрыва у нас появляется кое-что новое и важное - односторонние (левый и правый) пределы. Обобщённо они записываются (правый предел) и (левый предел). Как и в случае с пределом вообще, для того, чтобы найти предел функции, нужно в выражение функции вместо икса подставить то, к чему стремится икс. Но, возможно, спросите вы, чем же будут отличаться правый и левый пределы, если в случае правого к иксу хотя что-то и прибавляется, но это что-то - ноль, а в случае левого из икса что-то вычитается, но это что-то - тоже ноль? И будете правы. В большинстве случаев.
Но в практике поиска точек разрыва функции и определения их вида существует два типичных случая, когда правый и левый пределы не равны:
|
- у функции существует два или более выражений, зависящих от участка числовой прямой, к которой принадлежит икс (эти выражения обычно записываются в фигурных скобках после f (x)=);
- в результате подстановки того, к чему стремится икс, получается дробь, в знаменателе которой остаётся или плюс ноль (+0) или минус ноль (-0) и поэтому такая дробь означает либо плюс бесконечность, либо минус бесконечность, а это совсем разные вещи.
Нахождение точек разрыва функции может быть как самостоятельной задачей, так и частью Полного исследования функции и построения графика.
Точки разрыва первого рода
Точка разрыва первого рода: у функции существуют как конечный (т. е. не равный бесконечности) левый предел, так и конечный правый предел, но функция не определена в точке или левый и правый пределы различны (не равны).
Точка устранимого разрыва первого рода. Левый и правый пределы равны. При этом существует возможность доопределить функцию в точке. Доопределить функцию в точке, говоря просто, значит обеспечить соединение точек, между которыми находится точка, в которой найдены равные друг другу левый и правый пределы. При этом соединение должно представлять собой лишь одну точку, в которой должно быть найдено значение функции.
Пример 1. Определить точку разрыва функции и вид (характер) точки разрыва.
Решение. Функция не определена в точке . Находим левый и правый пределы функции в этой точке:
,
.
Левый и правый пределы равны, следовательно точка - точка устранимого разрыва первого рода.
Есть возможность доопределить функцию:
|
График функции с точкой разрыва - под примером.
Точка неустранимого (конечного) разрыва первого рода. Существуют левый и правый пределы, но они различны (не равны). Функцию невозможно доопределить. Разность пределов называется скачком.
Пример 2. Определить точку разрыва функции и вид (характер) точки разрыва для функции
Решение. Очевидно, что в точке меняется выражение функции. Найдём левый и правый пределы функции в этой точке:
,
.
Левый и правый пределы не равны, следовательно точка - точка неустранимого (конечного) разрыва первого рода. График функции с точкой разрыва - под примером.
Нахождение точек разрыва функции может быть как самостоятельной задачей, так и частью Полного исследования функции и построения графика.