Последствия реассортаций




После того как ветви, в которых произошли реассортации, были обнаружены, стало возможным оценить их влияние на накопление в сегментах вирусного генома точечных замен. Для этого можно сравнить время, прошедшее между каждой такой заменой и ближайшей предшествующей ей реассортацией, с тем, которое бы ожидалось из компьютерной модели, если бы реассортации не влияли на замены. Проведенный анализ показал, что по крайней мере в пяти из восьми сегментов генома мутации ускоренно накапливаются после реассортации. Наиболее ярко эффект проявился для нейраминидазы и белка PB1. Ускорение аминокислотных замен после реассортаций вирусных геномов указывает на то, что в такие периоды эволюции вируса гриппа прежде всего происходит адаптация белков к новому генетическому окружению. Из-за того, что вирусные белки взаимодействуют между собой, молекулы из разошедшихся штаммов вынуждены какое-то время изменяться, приспосабливаясь друг к другу.

При этом для разных сегментов эффект ускоренного накопления точечных замен длится разное время. Если реассортация затрагивает субъединицу полимеразы, период «притирки» сегментов к новому копирующему белку оказывается сравнительно долгим. В случае нейраминидазы период повышенной скорости замен короче, и большинство дополнительных точечных замен встречается на филогенетических ветвях, которые сразу следуют за той, что отмечена реассортацией.

Интересно, что у нейраминидаз наблюдалось 30 замен, расстояние от которых до ветви, несущей реассортацию, меньше того эволюционного расстояния, на котором мы бы ожидали встретить одну случайную синонимичную замену в гене данного белка. Такой результат свидетельствует о том, что все эти 30 мутаций произошли и закрепились необычайно быстро, и что необходимость быстрой адаптации возникла именно благодаря тому, что соответствующий сегмент генома попал в новое генетическое окружение.

Какие же именно мутации случаются после реассортаций? Чтобы ответить на этот вопрос, можно разделить мутации на разные категории, пользуясь уже имеющимися знаниями о биологии вируса, о структуре его белков и об их эволюции. Например, известно, что некоторые мутации подвержены так называемому положительному отбору. Это значит, что они увеличивают приспособленность данного штамма — возрастает число вирусных частиц-потомков, которые он производит. В результате на такие «полезные» для вируса мутации начинает действовать дарвиновский естественный отбор, и частота их встречаемости со временем повышается. Такой отбор в поверхностных белках вируса гриппа (гемагглютинине и нейраминидазе), как правило, связан с действием иммунной системы хозяина: более приспособленными оказываются такие мутантные частицы, которые эффективнее «маскируются», избегая иммунитета. Места в белках, которые вирус может изменить, чтобы стать незаметным для иммунной системы, и которые поэтому обычно подвержены такому отбору, хорошо известны [16]. Можно было бы ожидать, что эти места также эволюционируют быстрее и после реассортаций. Но оказалось, что ускорение эволюции после реассортаций происходит совсем в других частях белка. По-видимому, это означает, что за взаимодействия белков друг с другом отвечают не те участки, что за их взаимодействие с иммунной системой.

Кроме того, можно изучить параллельные мутации, которые многократно затрагивали одни и те же позиции в уже эволюционно разошедшихся белках. Оказалось, что такие мутации часто случаются и вскоре после реассортаций. Возможно, это означает, что существенная доля параллельных мутаций происходит как ответ на мутации в других белках вируса. Вирус — тесно скоординированная структура, и, возможно, не только реассортации, но и каждое важное эволюционное событие влечет за собой «шлейф» изменений в других местах того же белка или других белков. Взаимодействия между разными генами и между разными местами одного гена называются эпистазом. Пары замен у вируса гриппа, когда вторая замена нейтрализует вредные последствия первой, были известны и ранее [17]. Оказалось, что замены в сайтах, способные уравновешивать изменения в других местах того же белка, быстро возникают также и после реассортаций, по-видимому, «подстраивая» межбелковые взаимодействия после замен в другом белке. Похоже, существуют такие аминокислоты, изменения которых могут нейтрализовать множество различных «поломок» в вирусном геноме.

Реассортация — это резкое эволюционное изменение, которое поначалу может снижать общую приспособленность вируса к условиям окружающей среды и к организму-хозяину. Однако иногда оказывается, что из-за такой перетасовки белков из разных штаммов новая форма патогена оказывается более приспособленной, чем штаммы-предшественники, получая возможность эффективнее распространиться [18]. Похоже, что за коррекцию первичного вредного эффекта от реассортации как раз и отвечают быстро закрепляющиеся адаптивные мутации.

Предсказания, полученные только статистическими методами, — путем анализа последовательностей белков и кодирующих их генов, — конечно, не могут иметь стопроцентную точность. Действительно ли взаимодействуют две определенные аминокислоты, можно проверить экспериментально. Однако каждый белок вируса состоит из сотен аминокислот, так что возможны десятки тысяч разных взаимодействий. Постановка такого числа экспериментов практически неосуществимы. Биоинформатический анализ позволяет расставлять приоритеты: выбирать и анализировать только те аминокислоты, которые участвуют во взаимодействиях, экономя время и силы экспериментаторов. Кроме того, такой подход позволяет понять, насколько взаимодействия, приводящие к вредности реассортаций, распространены на уровне всего генома.

Вопрос этот отнюдь не праздный. Связь между реассортациями и последующим накоплением аминокислотных замен может быть важна для предсказания возникновения новых линий вируса, способных вызвать пандемии. Например, «птичий» грипп (H5N1) — один из вероятных кандидатов на роль агента будущих серьезнейших эпидемий [19, 20]. Существующие штаммы этого подтипа гриппа в настоящее время не передаются между млекопитающими; однако для того чтобы получить такую способность, вирусу необходимы всего лишь пять дополнительных мутаций либо реассортация в сочетании с четырьмя заменами [21, 22]. При этом две из этих мутаций уже распространены среди вирусов H5N1 [23]. Если произойдет реассортация, недостающие замены могут возникнуть быстрее, чем считалось ранее.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (проект 13-04-02098) и Министерства образования и науки Российской Федерации (проект 11.G34.31.0008).

Литература
1. Steinhauer D. A., Domingo E., Holland J. J. Lack of evidence for proofreading mechanisms associated with an RNA virus polymerase // Gene. 1992. V. 22. № 2. P. 281–288.
2. Teng Q., Hu T., Li X. et al. Complete genome sequence of an H3N2 avian influenza virus isolated from a live poultry market in Eastern China // J. Virol. 2012. V. 86. № 21. P. 11944. DOI: 10.1128/JVI.02082-12.
3. Carr C. M., Kim P. S. A spring-loaded mechanism for the conformational change of influenza hemagglutinin // Cell. 1993. V. 73. № 4. P. 823–832.
4. Arranz R., Coloma R., Chichуn F. J. et al. The structure of native influenza virion ribonucleoproteins // Science. 2012. V. 338. № 6114. P. 1634–1637. DOI: 10.1126/science.1228172.
5. Kamali A., Holodniy M. Influenza treatment and prophylaxis with neuraminidase inhibitors: a review // Infection and Drug Resistance. 2013. № 6. P. 187–198. DOI: 10.2147/IDR.S36601.
6. Nayak D. P., Hui E. K., Barman S. Assembly and budding of influenza virus // Virus Res. 2004. V. 106. № 2. P. 147–165.
7. Lear J. D. Proton conduction through the M2 protein of the influenza A virus; a quantitative, mechanistic analysis of experimental data // FEBS Lett. 2003. V. 552. № 1. P. 17–22.
8. Hale B. G., Randall R. E., Ortнn J. et al. The multifunctional NS1 protein of influenza A viruses // J. Gen. Virol. 2008. V. 89. № 10. P. 2359–2376. DOI: 10.1099/vir.0.2008/004606-0.
9. Robb N. C, Smith M., Vreede F. T. et al. NS2/NEP protein regulates transcription and replication of the influenza virus RNA genome // J. Gen. Virol. 2009. V. 90. № 6. P. 1398–1407. DOI: 10.1099/vir.0.009639-0.
10. El Zowalaty M. E., Bustin S. A., Husseiny M. I. et al. Avian influenza: virology, diagnosis and surveillance // Future Microbiol. 2013. V. 8. № 9. P. 1209–1227. DOI: 10.2217/fmb.13.81.
11. Kaplan B. S., Webby R. J. The avian and mammalian host range of highly pathogenic avian H5N1 influenza // Virus Res. 2013. V. 178. № 1. P. 3–11. DOI: 10.1016/j.virusres.2013.09.004.
12. Kilbourne E. D. Influenza pandemics of the 20th century // Emerg. Infect. Dis. 2006. V. 12. № 1. P. 9–14.
13. Suzuki Y. A phylogenetic approach to detecting reassortments in viruses with segmented genomes // Gene. 2010. V. 464. № 1–2. P. 11–16. DOI: 10.1016/j.gene.2010.05.002.
14. Nagarajan N., Kingsford C. GiRaF: robust, computational identification of influenza reassortments via graph mining // Nucleic Acids Research. 2011. V. 39. № 6. e34. DOI: 10.1093/nar/gkq1232.
15. Neverov A. D., Lezhnina K. V., Kondrashov A. S., Bazykin G. A. Intrasubtype Reassortments Cause Adaptive Amino Acid Replacements in H3N2 Influenza Genes // PLoS Genet. 2014. V. 10. № 1. e1004037. DOI: 10.1371/journal.pgen.1004037
16. Wolf Y. I., Viboud C., Holmes E. C. et al. Long intervals of stasis punctuated by bursts of positive selection in the seasonal evolution of influenza A virus // Biol. Direct. 2006. V. 1. P. 34.
17. Kryazhimskiy S., Dushoff J., Bazykin G. A. et al. Prevalence of epistasis in the evolution of influenza A surface proteins // PLoS Genet. 2011. V. 7. № 2. e1001301. DOI: 10.1371/journal.pgen.1001301.
18. Li K. S., Guan Y., Wang J. et al. Genesis of a highly pathogenic and potentially pandemic H5N1 influenza virus in eastern Asia // Nature. 2004. V. 430. № 6996. P. 209–213.
19. Ferguson N. M., Fraser C., Donnelly C. A. et al. Public health. Public health risk from the avian H5N1 influenza epidemic // Science. 2004. V. 304. № 5673. P. 968–969.
20. Yong E. Influenza: Five questions on H5N1 // Nature. 2012. V. 486. № 7404. P. 456–458. DOI: 10.1038/486456a.
21. Herfst S., Schrauwen E. J., Linster M. et al. Airborne transmission of influenza A/H5N1 virus between ferrets // Science. 2012. V. 336. № 6088. P. 1534–1541. DOI: 10.1126/science.1213362.
22. Imai M., Watanabe T., Hatta M. et al. Experimental adaptation of an influenza H5 HA confers respiratory droplet transmission to a reassortant H5 HA/H1N1 virus in ferrets // Nature. 2012. V. 486. № 7403. P. 420–428. DOI: 10.1038/nature10831.
23. Russell C. A., Fonville J. M., Brown A. E. et al. The potential for respiratory droplet-transmissible A/H5N1 influenza virus to evolve in a mammalian host // Science. 2012. V. 336. № 6088. P. 1541–1547. DOI: 10.1126/science.1222526.

* Подробнее см. публикации Гендона Ю. З.: Пандемии гриппа: прошлое и будущее // Природа. 2008. № 5. С. 3–9 (PDF, 3 Мб); «Свиной грипп»: страсти и факты // Природа. 2010. № 2. С. 3–8 (PDF, 5 Мб).

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-11-29 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: