Арифметические действия над комплексными числами




Элементы теории функции комплексного переменного.

Комплексные числа.

Комплексным числом α называется пара действительных чисел a и b, взятых в определённом порядке: .

Рассмотрим число, изображаемой парой (0;1) – его обозначим через i. Тогда , , всякое комплексное число может быть записано в виде:

       
 
   


Очевидно, что если , то комплексное число обращается в действительное число, если , в чисто мнимое. Два комплексных числа, по определению, называются равными, если равны между собой их действительные части и равны их мнимые.

Два комплексных числа имеющих одну и ту же первую компоненту, но противоположные по знаку вторые компоненты, называются сопряжёнными и обозначаются , .

 

Всякое комплексное число мы можем изображать на плоскости с координатами a и b.

y

α

 

b

0 a x

Ось абсцисс называется действительной осью, ось ординат – мнимой осью. Плоскость, точки которой изображают комплексные числа, называют комплексно-числовой плоскостью.

Модулем комплексного числа α называют положительное число r и обозначают через . Направление вектора α определяется с помощью угла j положительным направлением оси Ox и направлением этого вектора j изображает угол на который нужно повернуть «+» направление оси Ox, чтобы совпало с направлением вектора α. Это число j называется аргументом комплексного числа α и обозначается через . Очевидно, что , так как r и j являются полярными координатами точки то имеем: ,

Формы записи комплексного числа

1) z - алгебраическая форма комплексного числа.

 

2)z - тригонометрическая форма комплексного числа,

3) z=re или -экспоненциальная запись комплексного числа(формула Эйлера)

Арифметические действия над комплексными числами

Сложение (вычитание) комплексных чисел:

z 1 ± z 2 = (x 1 + iy 1) ± (x 2 + iy 2) = (x 1 ± x 2) + i (y 1 ± y 2),

то есть при сложении (вычитании) комплексных чисел складываются (вычитаются) их действительные и их мнимые части.

Например,

1) (1 + i) + (2 – 3 i) = 1 + i + 2 –3 i = 3 – 2 i;

2) (1 + 2 i) – (2 – 5 i) = 1 + 2 i – 2 + 5 i = –1 + 7 i.

Основные свойства сложения комплексных чисел:

1) z 1 + z 2 = z 2 + z 1 — коммутативность;

2) z 1 + z 2 + z 3 = (z 1 + z 2) + z 3 = z 1 + (z 2 + z 3) — ассоциативность;

3) z 1z 2 = z 1 + (– z 2) — обратная операция (вычитание);

4) z + (– z) = 0 — сложение противоположных чисел;

5) — сложение комплексно сопряженных чисел.

Умножение комплексных чисел в алгебраической форме:

z 1z 2 = (x 1 + iy 1)∙(x 2 + iy 2) = x 1 x 2 + x 1 iy 2 + iy 1 x 2 + i 2 y 1 y 2 = (x 1 x 2 – y 1 y 2) + i (x 1 y 2 + y 1 x 2),

то есть умножение комплексных чисел в алгебраической форме проводится по правилу алгебраического умножения двучлена на двучлен с последующей заменой и приведением подобных по действительным и мнимым слагаемым.

Например,

1) (1 + i)∙(2 – 3 i) = 2 – 3 i + 2 i – 3 i 2 = 2 – 3 i + 2 i + 3 = 5 – i;

2) (1 + 4 i)∙(1 – 4 i) = 1 – 42 i 2 = 1 + 16 = 17;

3) (2 + i)2 = 22 + 4 i + i 2 = 3 + 4 i.

Умножение комплексных чисел тригонометрической форме:

z 1z 2 = r 1(cos j 1 + i sin j 1r 2(cos j 2 + i sin j 2) =
= r 1 r 2(cos j 1cos j 2 + i cos j 1sin j 2 + i sin j 1cos j 2 + i 2 sin j 1sin j 2) =
= r 1 r 2((cos j 1cos j 2 – sin j 1sin j 2) + i (cos j 1sin j 2 + sin j 1cos j 2))

Произведение комплексных чисел в тригонометрической форме

то есть при умножении комплексных чисел в тригонометрической форме их модули перемножаются, а аргументы складываются.

Например,

Основные свойства умножения комплексных чисел :

1) z 1× z 2 = z 2× z 1 — коммутативность;

2) z 1× z 2× z 3 = (z 1× z 2z 3 = z 1×(z 2× z 3) — ассоциативность;

3) z 1×(z 2 + z 3) = z 1× z 2 + z 1× z 3 — дистрибутивность относительно сложения;

4) z ×0 = 0; z ×1 = z; — умножение на ноль и на единицу;

5) — умножение комплексно сопряженных чисел.

Деление комплексных чисел — это обратная умножению операция, поэтому если z×z 2 = z 1 и z 2 ¹ 0, то .

При выполнении деления в алгебраической форме числитель и знаменатель дроби умножаются на число, комплексно сопряженное знаменателю:

Деление комплексных чисел в алгебраической форме.

При выполнении деления комплексных чисел в тригонометрической форме их модули делятся, а аргументы вычитаются:

Деление комплексных чисел в тригонометрической форме.

Например,

1) ;

2) .

Возведение комплексного числа в натуральную степень :

возведение комплексного числа в натуральную степень удобнее выполнять в тригонометрической форме:

в результате получается формула Муавра:

Формула Муавра,

то есть при возведении комплексного числа в натуральную степень его модуль возводится в эту степень, а аргумент умножается на показатель степени.

Пример (возведение комплексного числа в натуральную степень)

Вычислим (1 + i)10:



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-04-20 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: