ПРИБЛИЖЕННЫЙ ПОДСЧЕТ СУММЫ ЧИСЛОВОГО РЯДА.




 

По определению суммы ряда следовательно, при всех достаточно больших n разность . Обозначим Величина называется остатком ряда и сама является рядом.

Взяв и отбросив , допускаем погрешность которая называется остаточной погрешностью. Каждый член ряда будет вычисляться приближенно, поэтому при вычислении частичной суммы получим погрешность , которая называется погрешность промежуточных вычислений. Если каждый член ряда вычислять с точностью до знаков, т.е. с точностью до , то суммарная погрешность промежуточных вычислений будет равна . Кроме того возможна погрешность начальных данных однако мы в дальнейшем будем считать . Общая погрешность Обычно выбирают равными Иногда погрешностью промежуточных вычислений пренебрегают и считают .

Наибольшую трудность вызывают оценка остаточной погрешности. Поскольку остаточный член является рядом и точно вычислить его почти никогда не представляется возможным, то абсолютную величину остаточного члена оцениваю сверху. Если, начиная с некоторого номера то отбрасывая все члены ряда, начиная с n + 1, получим остаточную погрешность не превосходящую . Выбрав таким образом n, подбирают k так чтобы выполнялось неравенство , а затем проводят вычисления. В результате сумма ряда будет найдена с заданной точностью .

Умножим некоторые способы оценки остаточного члена.

a) Если рад является знакочередующимся то в силу следствия из теоремы Лейбница.

(1.39)

т.е. абсолютная величина остаточного члена не превосходит абсолютной величины первого отброшенного члена.

Пример 1. Найти сумму ряда

то с точностью до

Выбираем

В силу формулы (1.39)

Подберем n так, чтобы выполнялось неравенство , т.е. . Наименьшее значение n, при котором выполняется это неравенство, равно 44 Таким образом, чтобы остаточная погрешность не превосходила 0,0005, достаточно взять сумму первых 44 членов ряда, а члены ряда, начиная с 45-го, отбросить. Определим теперь, с какой точностью нужно вести промежуточные вычисления. Для этого нужно выбрать k так, чтобы выполнялось неравенство

Достаточно взять . Заметим, что при неравенство не выполняется (многие считают, что, если какую – либо величину нужно вычислить с точностью до трех знаков, то промежуточные вычисления нужно вести с точностью до четырех знаков, а затем округлить до трех знаков. Как видно из этого примера, такое утверждение неверно). Итак,

б) Рассмотрим ряд с положительными членами (1.1) . Предположим, что не возрастают

и - невозрастающая, непрерывная функция такая, что . Тогда

Пример 2. Оценить остаточный член ряда.

Рассмотрим функцию Тогда . При следственно функция монотонно убывает при а поэтому члены ряда монотонно убывают при Таким образом

Поскольку (в последнем можно убедится, правило Лопиталя), то

Пример 3. Вычислить сумму ряда.

(1.40)

с точностью до

Возьмём . Здесь Легко убедится что

Функция - непрерывная при и монотонно убывающая, поэтому

(1.41)

Поскольку , то

Если выбрать n так, чтобы выполнялось неравенство то тем более будет выполнятся неравенство Найдём это n:

Наименьшее целое значение n, при котором выполняется это неравенство, равно 6.

Таким образом, (Отметим, что, если в неравенстве (1.40) подыинтегральную дробь размножить на простейшие и вычислить интеграл, то возможно, что при n = 5 значение интеграла будет меньше 0,0005, и тогда было бы но вряд ли целесообразно выполнять эти длинные вычисления из-за одного слагаемого). Промежуточные вычисления будем выполнять с точностью до 5 знаков:

Вычислим сумму ряда с точностью до 0,001:

в) На следующем примере продемонстрируем искусственный метод оценки остаточного члена.

Пример 4. Сколько членов ряда нужно взять, чтобы остаточный член был меньше

Оценим остаточный член ряда сверху:

В последних скобках записан геометрический ряд, первый член которого равен 1, а знаменатель поэтому

Наименьшее целое значение n, при котором выполняется последнее неравенство, равно 6. Итак,

 

 

II. ФУНКЦИОНАЛЬНЫЕ РЯДЫ.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: