углы соответственно равны и фициента подобия.

стороны 1го 3-угольника про-

порционально сходственны Теорема: Если 2 угла 1го 3-уголь-

сторонам другого. ника соответственно = 2ум углам

другого, то такие 3-угольники по-

Теорема: Если 2 стороны 1го добны.

угольника пропорциональны 2ум

сторонам другого 3-угольника и углы, заключённые между этими сторо-

нами, равны, то такие 3-угольники подобны.

Теорема: Если 3 стороны 1го Теорема: Средняя линия параллель-

3-угольника пропорциональны на 1ой из его сторон и равна ½ этой

м сторонам другого, то такие стороны.

угольники подобны.

sin острого угла прямоугольного cos острого угла прямоугольного 3-уголь-

3-угольника – отношение ника – отношение прилежащего катета

противолежащего катета к к гипотенузе.

гипотенузе.

tg угла = отношению sin к cos

tg острого угла прямоугольного этого угла: tg = sin/ cos.

3-угольника – отношение противо-

лежащего катета к прилежащему. Основное тригонометрическое

тождество:

Если острый угол 1го прямоугольного sin2α+ cos2α=1.

3-угольника = острому углу другого прямо-

угольного 3-угольника, то синусы, косинусы и тангенсы этих углов равны.

x 30° 45° 60° 90° 180° 270° 360°
sinx 0 1/2 2/2 3/2 1 0 -1 0
cosx 1 3/2 2/2 1/2 0 -1 0 1
tgx 0 1/ 3 1 3 0 0
ctgx 3 1 1/ 3 0 0
0 П/6 П/4 П/3 П/2 П 3П/2

Глава VIII.

Окружность.

Если расстояние от центра окруж- Если расстояние от центра окруж-

ности до прямой < радиуса, то пря- ности до прямой = радиуса, то пря-

мая и окружность имеют 2 общие мая и окружность имеют 2 общие

точки. Прямая является секущей. точки. Прямая является касательной.

Если расстояние от центра окруж- Теорема: Касательная к окруж-

ности до прямой > радиуса, то пря- ности перпендикулярна кr, прове-

мая и окружность не имеют общих дённому в точку касания.

точек.

Теорема: Если прямая проходит

Отрезки касательных к окружнос- через конецr, лежащий на окруж-

ти, проведённые из 1ой точки, рав- ности, и перпендикулярна к этому

ны и составляют равные углы с r, то она является касательной.

прямой, проходящей через эту точ-

ку и центр окружности. Дуга является полуокружностью.

Угол с вершиной в центре окруж- Если дуга АВ окружности с центром

ности — её центральный угол. О < полуокружности или является

полуокружностью, то её градусная

Сумма градусных мер 2ух дуг ок- мера считается равной градусной

ружности с общими концами = мере центрального угла АОВ. Если же

= 360°. дуга АВ > полуокружности, то её

градусная мера считается =

Угол, вершина кот-го лежит на = 360°–<АОВ.

окружности, а стороны пересе-

кают окружность, называется Теорема: Вписанный угол измеряя-

вписанным углом. ется ½ дуги, на кот-ую он опирается.

Луч ВО совпадает с 1ой из сто- Луч ВО делит угол АВС на 2 угла, если

рон угла АВС. луч ВО пересекает дугу АС.

Луч ВО не делит угол АВС на 2 Вписанные углы, опирающиеся на 1 и ту

угла и не совпадает со сторона- же дугу, равны.

ми этого угла, если луч ВО не

пересекает дугу АС. Вписанный угол, опирающийся на полу-

окружность, -- прямой.

Теорема: Если 2 хорды ок- Теорема: Каждая точка бисс-сы

ружности пересекаются, то неразвёрнутого угла равноудалена

произведение отрезков 1ой от его сторон. Каждая точка, ле-

хорды = произведению отрез- жащая внутри угла и равноудалённая

ков другой хорды. от сторон угла, лежит на его бисс-се.

Бисс-сы 3-угольника пересека- Серединным перпендикуляром к отрезку

ются в 1ой точке. называется прямая, проходящая через

середину отрезка и перпендикулярная

Теорема: Каждая точка се- к нему.

рединного перпендикуляра к

отрезку равноудалена от концов Серединные перпендикуляры к сторо-

этого отрезка. Каждая точка, нам 3-угольника пересекаются в 1ой

равноудалённая отконцов отрез- точке.

ка, лежит на серединном перпен-

дикуляре. Теорема: в любой 3-угольник мож-

но вписать окружность.

Теорема: Высоты 3-угольника

(или их продолжения) пересека- В 3-угольник можно вписать только 1у

ются в 1ой точке. окружность.

Теорема: Около любого треу- В любом вписанном 4-угольнике сумма

гольника можно онисать окруж- противоположных углов = 180°.

ность.

Если сумма противоположных углов 4-угольника = 180°, то около него можно описать окружность.

Глава IX.

Векторы.

Физические величины, характери- Определение: Отрезок, для кот-

зуещиеся направлением в прост- го указано, какой из его концов счи-

ранстве – векторные. тается началом, а какой – концом,

называется вектором.

Длина (модуль) – длина АВ.

Длина нулевого вектора = 0.

Нулевые векторы называются

коллинеарными, если они лежат Если 2 вектора направлены одинаково,

либо на одной прямой, либо на то эти векторы – сонаправлены.

параллельных прямых; нулевой

вектор считается коллинеар- Если 2 вектора направлены противопо-

ным любому вектору. ложно, то они противоположно напра-

влены.

Определение: Векторы,

называются равными, если От любой точки М можно отложить

они сонаправлены и их дли- вектор, равный данному вектору ã, и

ны равны. притом только один.

Теорема: для любых векторов ă, č и ĕ справедливы равенства:

1. ă + č = č + ă (переместительный закон);

2. ( ă + č )+ ĕ = ă +( č + ĕ ).

Теорема: Для любых векто- Произведение любого вектора на число

ров ă и č справедливо равенство: 0 есть нулевой вектор.

ă – č = ă + ( - č ).

Для любого числа k и любого векто- ( kl )ă=k( lă ) (сочетательный закон);

ра ă векторы ă и kă коллинеарны. ( k+ l )ă=kă+lă(1ый рспред-ный закон);

k(ă+č )=kă+kč.

Теорема: Средняя линия тра-





©2015-2017 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.

Обратная связь

ТОП 5 активных страниц!