Суть гетероскедастичности. (нарушение условий Гаусса-Маркова)




Гетероскедастичность (англ. heterosсedasticity) — понятие, используемое в прикладной статистике (чаще всего — вэконометрике), означающее неоднородность наблюдений, выражающуюся в неодинаковой (непостоянной) дисперсии случайной ошибки регрессионной (эконометрической) модели. Гетероскедастичность противоположнагомоскедастичности, означающей однородность наблюдений, то есть постоянство дисперсии случайных ошибок модели.

Наличие гетероскедастичности случайных ошибок приводит к неэффективности оценок, полученных с помощьюметода наименьших квадратов. Кроме того, в этом случае оказывается смещённой и несостоятельной классическая оценка ковариационной матрицы МНК-оценок параметров. Следовательно статистические выводы о качестве полученных оценок могут быть неадекватными. В связи с этим тестирование моделей на гетероскедастичность является одной из необходимых процедур при построении регрессионных моделей.

Тестирование гетероскедастичности

В первом приближении наличие гетероскедастичности можно заметить на графиках остатков регрессии (или их квадратов) по некоторым переменным, по оцененной зависимой переменной или по номеру наблюдения. На этих графиках разброс точек может меняться в зависимости от значения этих переменных.

Для более строгой проверки применяют, например, статистические тесты Уайта, Голдфелда — Куандта, Бройша — Пагана, Парка, Глейзера, Спирмена.

Оценка модели при гетероскедастичности

Поскольку МНК-оценки параметров моделей остаются несмещёнными состоятельными даже при гетероскедастичности, то при достаточном количестве наблюдений возможно применение обычного МНК. Однако, для более точных и правильных статистических выводов необходимо использоватьстандартные ошибки в форме Уайта.

Способы снижения гетероскедастичности

Использование взвешенного метода наименьших квадратов (ВМНК, WLS). В этом методе каждое наблюдение взвешивается обратно пропорционально предполагаемому стандартному отклонению случайной ошибки в этом наблюдении. Такой подход позволяет сделать случайные ошибки модели гомоскедастичными. В частности, если предполагается, что стандартное отклонение ошибок пропорционально некоторой переменной Z, то данные делятся на эту переменную, включая константу.

Замена исходных данных их производными, например, логарифмом, относительным изменением или другой нелинейной функцией. Этот подход часто используется в случае увеличения дисперсии ошибки с ростом значения независимой переменной и приводит к стабилизации дисперсии в более широком диапазоне входных данных.

Определение «областей компетенции» моделей, внутри которых дисперсия ошибки сравнительно стабильна, и использование комбинации моделей. Таким образом, каждая модель работает только в области своей компетенции, и дисперсия ошибки не превышает заданное граничное значение. Этот подход распространен в области распознавания образов, где часто используются сложные нелинейные модели и эвристики.

2-е условие Гаусса-Маркова состоит в том, что дисперсия ошибки постоянна для всех наблюдений:

D(ui) = s2 = const, i = 1...n.

Условие независимости дисперсии от номера наблюдения называется гомоскедастичностью (homoscedasticity). Случай непостоянства дисперсии для разных наблюдений называется гетероскедастичностью (heteroscedasticity). На рис.5 а) приведен пример типичной картинки для случая гомоскедастичности ошибок, на рис. 5 б) – пример данных с гетероскедастичными ошибками.

 

а) гомоскедастичность ошибок б) гетероскедастичность ошибок

Рисунок 4 – Принципиальные схемы случаев гомоскедастичности и гетероскедастичности ошибок

 

Иногда случайная ошибка будет больше, иногда меньше, однако не должно быть такого, что в одних наблюдениях ошибка систематически больше, чем в других. Эта постоянная дисперсия обозначается σ2.

В терминах зависимой переменной условие гомоскедастичности формулируется как условие постоянства дисперсии y: D(y)=σ2.

Если условие постоянства дисперсии не выполняется, то оценки, найденные по методу наименьших квадратов, будут неэффективны. Для получения более надежных результатов надо использовать модифицированный метод наименьших квадратов (см., например, Доугерти, 2001).

Величина σ2 неизвестна. Одна из задач регрессионного анализа состоит в ее оценке, точнее оценке стандартного отклонения случайного члена.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-02-16 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: