Обработка результатов эксперимента.




Исследование распределения температуры в тонком цилиндрическом стержне

Курсовая работа по информатике

Исполнитель: Солнцев П.В.

Санкт-Петербургский Государственный Технологический Институт (Технический Университет)

Санкт-Петербург 2001

Введение

В решении любой прикладной задачи можно выделить три основных этапа: построение математической модели исследуемого объекта, выбор способа и алгоритма решения полученной модели, численная реализация алгоритма.

Цель данной работы – на примере исследования распределения температуры в тонком цилиндрическом стержне освоить основные методы приближённых вычислений, приобрести практические навыки самостоятельных исследований, существенно опирающихся на использование методов прикладной математики.

Постановка задачи

Физическая модель

В ряде практических задач возникает необходимость исследования распределения температуры вдоль тонкого цилиндрического стержня, помещённого в высокотемпературный поток жидкости или газа. Это исследование может проводиться либо на основе обработки эксперимента (измерение температуры в различных точках стержня), либо путём анализа соответствующей математической модели.

В настоящей работе используются оба подхода.

Тонкий цилиндрический стержень помещён в тепловой поток с постоянной температурой , на концах стержня поддерживается постоянная температура 0.

 

 

 

1.2 Математическая модель

Совместим координатную ось абсцисс с продольной осью стержня с началом в середине стержня. Будем рассматривать задачу (распределения температуры по стержню) мосле момента установления режима Т0.

 
 

Первая математическая модель использует экспериментальные данные, при этом измеряют температуру Ui стержня в нескольких точках стержня с координатами xi. Результаты измерения Ui рассматривают как функцию регрессии и получают статистики. Учитывая чётность U(x) можно искать её в виде многочлена по чётным степеням x (ограничимся 4-ой степенью этого многочлена).

 
 

(1.1)

Задача сводится к отысканию оценок неизвестных параметров, т.е. коэффициентов a0, a1 и a2, например, методом наименьших квадратов.

Вторая математическая модель, также использующая экспериментальные данные, состоит в применении интерполяционных формул и может употребляться, если погрешность измерений температуры Ui пренебрежимо мала, т.е. можно считать, что U(xi)=Ui

 
 

Третья математическая модель основана на использовании закона теплофизики. Можно доказать, что искомая функция U(x) имеет вид:

(1.2)

где коэффициент теплопроводности, коэффициент теплоотдачи, D – диаметр стержня, температура потока, в который помещён стержень.

 
 

Ищем U(x) как решение краевой задачи для уравнения (1.2) с граничными условиями:

(1.3)

на отрезке [-L|/2;L/2], где L – длина стержня, постоянная температура, поддерживаемая на концах стержня.

Коэффициент теплопроводности  зависит от температуры:

 
 

(1.4)

где начальное значение коэффициента теплопроводности, вспомогательный коэффициент.

 
 

Коэффициент теплоотдачи вычисляют по формуле:

(1.5)

       
   
 

т.е. как среднее значение функции

за некоторый отрезок времени от 0 до Т, здесь значение при t стремящемся к бесконечности, b – известный коэффициент.

 
 

Время Т0, по истечении которого распределение температуры в стержне можно считать установившимся определяется по формуле:

(1.6)

 
 

где а – коэффициент температуропроводности, наименьший положительный корень уравнения:

(1.7)

Задание курсовой работы

Вариант № 136

Исходные данные:

L = 0.0386 м

D = 0,00386 м

оС

оС

141,85 (Вт/м*К)

2,703*10-4

6,789*10-7

3,383*102 (Вт/м2*К)

218 оС

А = 3,043*10-5 (м2/с)

X, м U, oC
   
0,00386  
0,00772  
0,01158  
0,01544  
0,01930  

Обработка результатов эксперимента.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: