Искусственный интеллект в настоящее время применяется во многих областях. В последние годы современные информационные технологии совершили резкий скачок вперед, в основном за счет повышения производительности массовых процессоров и удешевления памяти ЭВМ. Это привело к появлению приложений, в которых воплотились серьезные теоретические наработки по искусственному интеллекту.
Основной проблемой исследований в области искусственного интеллекта является построение машинной модели, которая бы производила сложные преобразования информации, осуществляемые человеческим мозгом, включая в частности зрительное распознавание пространственных сцен, общение на естественном языке, в том числе в форме речи, обучение на опыте, выработку новых понятий, открытие новых свойств и законов, постановку новых задач и нахождение алгоритмов их решения, разработку новых научных теорий и т. д.
Идея практического применения исследований в области искусственного интеллекта в виде экспертных систем заключается в следующем. Если пока не удается заставить машину тонко приспосабливаться к проблемной области, самой вырабатывать нужные методы поиска, находить существенно новые свойства и законы, вырабатывать новые знания, приобретать новый опыт в изучаемой ею проблемной области, то можно воспользоваться накопленным человеческим опытом, готовыми знаниями, методами, навыками решения задач в некоторой предметной области и заложить их в машину (в ее базу знаний). Тем самым будет на время снята проблема накопления машиной опыта, открытия ею новых знаний и останется проблема применения уже накопленного специалистами опыта для вывода знаний с помощью имеющихся средств.
|
Затем необходимо разработать программу применения этого опыта для решения тех задач, с которыми справляется специалист и при решении которых он не располагает строгими математическими алгоритмами в силу неформализованности соответствующих знаний, отсутствия точных математических моделей. Речь идет о том опыте, который специалист может выразить словами в терминах данной предметной области, в виде либо некоторых общих высказываний и правил, либо описания конкретных примеров, образцов решений и действий в различных конкретных ситуациях. Такие знания называются вербализуемыми. Но у человека вырабатывается и другой опыт, не описываемый терминами исследуемой предметной области. Этот опыт представляется в некоторой системе формирующихся у человека связей, образов, интуитивных предчувствий, предвидений, предпочтений, неосознаваемых реакций и т. п. Он не сформирован в четко осознаваемые человеком правила, связи, принципы, эмпирические законы.
По-видимому, описание подсознательного опыта следует проводить в другом языке - не в терминах внешнего поведения человека при обработке им информации, а в терминах нейронных структур человеческого мозга и их связей, обеспечивающих самоорганизацию и специализацию поисковых механизмов. Поэтому предметная область для экспертных систем должна быть такой, чтобы опыт, который не удается вербализовать, не играл главенствующую роль при решении задач, как, например, в задачах оценки произведений искусства, в процессах художественного творчества, дегустации и т. п.
|
На этапе создания экспертных систем первого поколения в них применялись наиболее проработанные фрагменты еще далеких от завершения исследований в области искусственного интеллекта. При этом из-за недостаточности научных знаний о том, как заставить машину приобретать знания и опыт, использовался накопленный человечеством научный потенциал и практический опыт; из-за недостаточности научных знаний о том, как передать машине ту часть человеческого опыта, которая не поддается словесным описаниям, пришлось передавать машине только опыт, поддающийся вербализации. Наконец, из вербализуемых знаний использовались в основном только так называемые поверхностные, эмпирические знания, получаемые в результате обобщения внешнего поведения исследуемых объектов, без учета их внутренней природы, внутренних законов функционирования, глубоких причинно-следственных связей. Представление же глубинных знаний, а также приведение индуктивных выводов, обучение на опыте, открытие новых свойств, законов и другие сложные интеллектуальные действия включаются в разработку экспертных систем второго и последующих поколений. Тем не менее уже разработанные экспертные системы находят применение в самых разнообразных областях науки, техники, производства, культуры.
Список используемой литературы
Емельянова Н.З. «Основы построения автоматизированных информационных систем: учебное пособие» / Н.З. Емельянова, Т.Л. Партыка, И.И. Попов – М.: Форум: Инфра-М, 2005. – 412 с.
Ильина О. П. «Информационные технологии бухгалтерского учета» / О. П. Ильина – СПб: Питер, 2001 – 688 с.
Филимонова Е. В. «Информационные технологии в профессиональной деятельности: учебник» / Е.В. Филимонова – Ростов н/Д: Феникс, 2004 – 352 с.
«Информационные технологии в Управлении предприятием» – Крылович А.В. – https://www.cfin.ru/itm/kis/.
«Основные факторы риска при внедрении учетно-управленческих систем класса ERP на российских предприятиях» – Василий Кашкин, Юлиана Петрова – Аналитический отчет «РА Эксперт» – 2003 – 28 с.
«Экономика информационных систем: от снижения затрат к повышению отдачи» – Кирилл Скрипкин – «Директор информационной службы» (№6, 2003).
«Экономическая эффективность инвестиций в ИТ: оптимальный метод оценки» – Юрий Ипатов, Юрий Цыгалов – «Планета КИС» (№1, 2004).