Действия с числовыми рядами




Ряд. Сходимость рядов. Признак Даламбера

 

Пусть задана бесконечная последовательность чисел . Выражение называется числовым рядом. При этом числа называются членами ряда.


Числовой ряд часто записывают в виде .


Теорема (необходимый признак сходимости ряда). Если ряд сходится, то его -й член стремится к нулю при неограниченном возрастании .


Следствие. Если -й член ряда не стремится к нулю при , то ряд расходится.


Теорема (признак Даламбера). Если в ряде с положительными членами отношение -го члена ряда к -му при имеет конечный предел , т.е. , то:
- ряд сходится в случае ,
- ряд расходится в случае .
В случаях, когда предел не существует или он равен единице, ответа на вопрос о сходимости или расходимости числового ряда теорема не дает. Необходимо провести дополнительное исследование.


Примеры решения задач

Пример 1. Исследовать сходимость ряда .

Решение.

Применим признак сходимости Даламбера. Сначала запишем формулы для -го и -го членов ряда:


Затем найдем предел отношения -го члена ряда к -му при :


И последнее, сделаем вывод о сходимости ряда, сравнив полученное значение предела с 1. Поскольку , то данный ряд расходится.


Ответ: ряд расходится.

 

Пример 2. Исследовать сходимость ряда .

Решение.

Применим признак сходимости Даламбера. Запишем формулы для -го и -го членов ряда:


Найдем предел отношения -го члена ряда к -му при :


Сравним полученное значение предела с 1. Поскольку , то данный ряд сходится.

Ответ: ряд сходится.

Сумма ряда.

Определение

Пусть — последовательность чисел. Число называется n -ой частичной суммой ряда .

Сумма (числового) ряда — это предел частичных сумм Sn, если он существует и конечен. Таким образом, если существует число , то в этом случае пишут .

Условия существования суммы ряда.

Для существования суммы числового ряда необходимо стремление его членов к нулю. Достаточные условия существования суммы ряда более сложны.

Примеры:

  • , где | q | < 1 — сумма геометрической прогрессии, в частности
  • .

Действия с рядами.

 

Действия с числовыми рядами

Действия с числовыми рядами

Выделяют следующие действия с числовыми рядами (они имеют смысл, т.е. сохраняют сумму ряда, только если она существует):

  • Линейная комбинация рядов

Если ряды и сходятся, то сходится и ряд (α, β — постоянные), при этом

  • Группировка членов ряда

Сгруппируем слагаемые ряда , объединив без изменения порядка следования по нескольку (конечное число) членов ряда. Получим некоторый новый ряд . Раскрытие скобок в ряде в общем случае недопустимо, однако: если после раскрытия скобок получается сходящийся ряд, то раскрытие скобок возможно; если а каждой скобке все слагаемые имеют один и тот же знак, то раскрытие скобок не нарушает сходимости и не изменяет величину суммы.

 

  • Перестановка членов ряда

Если ряд сходится абсолютно, то любой ряд, полученный из него перестановкой членов, также сходится абсолютно и имеет ту же сумму, что и исходный ряд. Если ряд сходится условно, то для любого наперёд заданного A (в том числе , , ) можно так переставить члены этого ряда, что преобразованный ряд сходится к A (расходится к , , ) либо не имеет предела (теорема Римана).

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2018-01-30 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: