Подставляем полученное соотношение в исходное уравнение




 

Из этого уравнения определим переменную функцию С1(х):

Интегрируя, получаем:

Подставляя это значение в исходное уравнение, получаем:

 

.

Таким образом, мы получили результат, полностью совпадающий с результатом расчета по методу Бернулли.

 

При выборе метода решения линейных дифференциальных уравнений следует руководствоваться простотой интегрирования функций, входящих в исходный интеграл.

 

Далее рассмотрим примеры решения различных дифференциальных уравнений различными методами и сравним результаты.

 

 

Пример. Решить уравнение

 

Сначала приведем данное уравнение к стандартному виду:

Применим полученную выше формулу:

 

 

Уравнение Бернулли.

 

Определение. Уравнением Бернулли называется уравнение вида

где P и Q – функции от х или постоянные числа, а n – постоянное число, не равное 1.

 

Для решения уравнения Бернулли применяют подстановку, с помощью которой, уравнение Бернулли приводится к линейному.

Для этого разделим исходное уравнение на yn.

 

 

Применим подстановку, учтя, что.

 

Т.е. получилось линейное уравнение относительно неизвестной функции z.

Решение этого уравнения будем искать в виде:

 

Пример. Решить уравнение

 

Разделим уравнение на xy2:

Полагаем

.

Полагаем

Произведя обратную подстановку, получаем:

 

 

Пример. Решить уравнение

 

Разделим обе части уравнения на

Полагаем

Получили линейное неоднородное дифференциальное уравнение. Рассмотрим соответствующее ему линейное однородное уравнение:

 

Полагаем C = C(x) и подставляем полученный результат в линейное неоднородное уравнение, с учетом того, что:

 

 

Получаем:

Применяя обратную подстановку, получаем окончательный ответ:

 

 

Уравнения в полных дифференциалах (тотальные).

 

Определение. Дифференциальное уравнение первого порядка вида:

называется уравнением в полных дифференциалах, если левая часть этого уравнения представляет собой полный дифференциал некоторой функции

 

Интегрирование такого уравнения сводится к нахождению функции u, после чего решение легко находится в виде:

Таким образом, для решения надо определить:

1) в каком случае левая часть уравнения представляет собой полный дифференциал функции u;

2) как найти эту функцию.

 

Если дифференциальная форма является полным дифференциалом некоторой функции u, то можно записать:

Т.е..

Найдем смешанные производные второго порядка, продифференцировав первое уравнение по у, а второе – по х:

Приравнивая левые части уравнений, получаем необходимое и достаточное условие того, что левая часть дифференциального уравнения является полным дифференциалом. Это условие также называется условием тотальности.

Теперь рассмотрим вопрос о нахождении собственно функции u.

Проинтегрируем равенство:

Вследствие интегрирования получаем не постоянную величину С, а некоторую функцию С(у), т.к. при интегрировании переменная у полагается постоянным параметром.

Определим функцию С(у).

Продифференцируем полученное равенство по у.

Откуда получаем:

Для нахождения функции С(у) необходимо проинтегрировать приведенное выше равенство. Однако, перед интегрированием надо доказать, что функция С(у) не зависит от х. Это условие будет выполнено, если производная этой функции по х равна нулю.

Теперь определяем функцию С(у):

Подставляя этот результат в выражение для функции u, получаем:

 

Тогда общий интеграл исходного дифференциального уравнения будет иметь вид:

 

Следует отметить, что при решении уравнений в полных дифференциалах не обязательно использовать полученную формулу. Решение может получиться более компактным, если просто следовать методу, которым формула была получена.

 

Пример. Решить уравнение

 

Проверим условие тотальности:

 

Условие тотальности выполняется, следовательно, исходное дифференциальное уравнение является уравнением в полных дифференциалах.

Определим функцию u.

;

Итого,

Находим общий интеграл исходного дифференциального уравнения:

 

 

Уравнения вида y = f(y’) и x = f(y’).

 

Решение уравнений, не содержащих в одном случае аргумента х, а в другом – функции у, ищем в параметрической форме, принимая за параметр производную неизвестной функции.

Для уравнения первого типа получаем:

Делая замену, получаем:

В результате этих преобразований имеем дифференциальное уравнение с разделяющимися переменными.

Общий интеграл в параметрической форме представляется системой уравнений:

Исключив из этой системы параметр р, получим общий интеграл и не в параметрической форме.

 

Для дифференциального уравнения вида x = f(y’) с помощью той же самой подстановки и аналогичных рассуждений получаем результат:

 

 

Уравнения Лагранжа и Клеро.

(Алекси Клод Клеро (1713 – 1765) французский математик

ин. поч. член Петерб. АН)

 

 

Определение. Уравнением Лагранжа называется дифференциальное уравнение, линейное относительно х и у, коэффициенты которого являются функциями от y’.

Для нахождения общего решение применяется подстановка p = y’.

Дифференцируя это уравнение,c учетом того, что, получаем:

Если решение этого (линейного относительно х) уравнения есть то общее решение уравнения Лагранжа может быть записано в виде:

 

Определение. Уравнением Клеро называется уравнение первой степени (т.е. линейное) относительно функции и аргумента вида:

Вообще говоря, уравнение Клеро является частным случаем уравнения Лагранжа.

С учетом замены, уравнение принимает вид:

 

Это уравнение имеет два возможных решения:

или

В первом случае:

 

Видно, что общий интеграл уравнения Клеро представляет собой семейство прямых линий.

Во втором случае решение в параметрической форме выражается системой уравнений:

 

Исключая параметр р, получаем второе решение F(x, y) = 0. Это решение не содержит произвольной постоянной и не получено из общего решения, следовательно, не является частным решением.

Это решение будет являться особым интегралом. (См. Особое решение.)

Далее рассмотрим примеры решения различных типов дифференциальных уравнений первого порядка




Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-30 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: