С. П. КОРОЛЕВ и Ю. А. ГАГАРИН – СХОЖИЕ СУДЬБЫ 5 глава




Беляев все же сориентировал корабль, но тормозной импульс выдал специально чуть больше расчетного. Он дал возможную поправку на свою ошибку в отсчет работы двигателя по секундам, чтобы с гарантией перелететь Европу. В результате, как и следовало ожидать, он перестарался и возвращаемый аппарат сел в глухие дебри Пермской тайги.

В сорокаградусный мороз, в полутораметровом снегу экипаж около двух суток боролся за свое существование, пока не подоспела помощь спасателей. Экипаж впервые реально испытал на себе все средства спасения и выживания, которые он осваивал на предварительных тренировках перед полетом.

Беляев П. И. награжден орденом Ленина и медалью Золотая Звезда. Ему присвоены звания Герой Советского Союза и Летчик‑космонавт СССР.

Леонов А. А. награжден орденом Ленина и медалью Золотая Звезда. Ему присвоены звания Герой Советского Союза и Летчик‑космонавт СССР

Чтобы завершить рассказ о полетах на космических кораблях «Восток» и «Восход», нужно разобраться еще хотя бы с основными формулировками и понятиями, связанными с пилотируемой космонавтикой. Вот некоторые из них.

Орбита – траектория движения космического летательного аппарата на основном участке полета.

Перигей – ближайшая к Земле точка орбиты космического аппарата.

Апогей – наиболее удаленная от Земли точка орбиты космического аппарата.

Линия апсид – линия, соединяющая точки апогея и перигея.

Восходящий узел орбиты – точка, в которой орбита пересекает плоскость экватора при переходе космического корабля из южной полусферы в северную.

Нисходящий узел орбиты – точка, в которой орбита пересекает плоскость земного экватора при переходе космического аппарата из северной полусферы в южную.

Линия узлов – линия, соединяющая восходящий и нисходящий узлы орбиты.

Наклонение орбиты – угол между плоскостью орбиты космического аппарата и плоскостью экватора.

Величина угла наклонения орбиты определяет границы географических широт, в пределах которых будет летать космический корабль. Чем больше наклонение орбиты, тем больше диапазон достижимых географических широт, но тем меньше вес выводимого на орбиту корабля. Последнее вызвано тем, что при увеличении наклона орбиты уменьшается энергия, передаваемая космическому кораблю за счет ее суточного вращения.

С полярной орбиты можно осматривать всю Землю, но для ее достижения требуются очень и очень многие энергетические затраты.

Одно и то же наклонение орбиты может быть получено при северо – восточном и юго – восточном направлении запуска ракеты – носителя. При старте с космодрома Байконур используется северо‑восточное направление, так как в этом случае полет на участке выведения и непосредственно после отделения от ракеты‑носителя проходит над территорией Казахстана и России. А это значит, что на наиболее ответственных участках полета наземные станции слежения и контроля могут осуществлять радио и телевизионную связь с кораблем, принимать телеметрическую информацию, более продолжительное время проводить измерения параметров орбиты.

На участке выведения от ракеты‑носителя космического комплекса отделяются и падают на Землю отработавшие ступени. Выделить район для падающих частей естественно легче на собственной и дружественной территориях. Однако количество выделенных районов ограничено. Поэтому ограничены и возможные направления запусков ракет‑носителей, а, следовательно, и величины угла наклонения.

Трасса выведения пролегает над малонаселенными районами и потому предполагаемый ущерб от падения обломков рассчитывается как минимальный.

Та же задача стоит перед учеными, конструкторами и при выборе возможных областей приземления возвращаемых аппаратов.

В уже выбранных районах выведения и спуска не допускают никакого строительства крупных промышленных объектов, не планируют расширение и развитие уже существующих населенных пунктов. И это понятно. Никто не хочет жить с осознанием того, что в любую минуту на голову может свалиться что‑то тяжелое, от которого и убежать будет невозможно.

В СССР и теперь в России наклонение орбиты пилотируемых космических кораблей находится в пределах от 51 до 65 градусов. Большое наклонение было принято для первых космических кораблей. Затем практически была принята орбита выведения с наклонением 51,6 градуса. Но для интернациональных экипажей при автономных полетах широкий выбор угла наклона сохранялся, так как это позволяло экипажам проводить исследования природных ресурсов над территорией своих стран.

Если бы Земля была неподвижной, то есть не вращалась бы вокруг своей оси, то орбита космического корабля все время проходила бы над одними и теми же районами Земли. Однако Земля вращается не только вокруг Солнца, но и вокруг собственной оси. Вследствие этого вращения при заданном наклонении орбиты географические координаты мест, над которыми будет пролегать полет космического корабля, зависят от периода его обращения – времени одного полного оборота корабля вокруг Земли.

Эти координаты, соединенные одной линией, образуют трассу полета. Трасса каждого нового витка в пространстве точно такая же, как и предыдущего, но из‑за собственного вращения Земли сдвинута к западу по долготе на угол поворота Земли относительно плоскости орбиты за период обращения. Долготное межвитковое расстояние сдвига за один оборот составляет 22,5 градуса.

Полный оборот плоскости орбиты космического корабля вокруг Земли завершается приблизительно через сутки. Можно подобрать период обращения орбиты таким, что к этому моменту корабль сделает целое число витков и его трасса совпадет с трассой предыдущих суток. То есть через сутки полета корабль может оказаться над той же точкой. Например, над точкой старта. Такие орбиты называют суточными.

Если период больше или меньше суточного, то трасса все время сдвигается по долготе соответственно к востоку или западу на величину, называемую суточным смещением трассы. Это особенно важно при полетах международных экипажей, так как каждому новому космонавту хочется получше разглядеть города и села своей страны, полностью выполнить запланированные эксперимент. Ради этого они готовы не спать несколько суток подряд. И практически всегда первую ночь никто из них не спит во время космического полета.

Некоторые объекты, правда, за время полета так и не попадают в поле зрения космонавтов. Например. На первом витке корабль проходит слева от объекта, а на следующем справа.

Через какое‑то время положение нужного объекта может все‑таки совпасть с трассой и даже будет в это время прекрасно освещен, но это еще не означает, что на объект не наползет сплошная облачность. И так далее и тому подобное. Космонавт может летать месяцами, но так и не увидит родной город со своей высокой орбиты.

Вследствие большой протяженности России в долготном направлении трасса полета в течение суток проходит через ее территорию 11 раз. Причем, корабль движется с юга на север, а орбита смещается с востока на запад.

Кроме того нужно помнить, что чем выше орбита полета, тем больше и период обращения.

Таким образом, изменяя период обращения \или высоту полета\, можно выбрать такую орбиту, что в каждые новые сутки можно будет фотографировать и изучать все новые и новые участки поверхности Земли.

Существенную роль при планировании полета играет выбор времени старта и допустимые пределы, в которых эти временные изменения возможны. В принципе старт космического корабля может состояться в любое время суток – и днем и ночью. Это как в авиации – взлететь можно в любую погоду. Вот только для посадки необходимы вполне определенные погодные условия и пригодный район.

У космонавтов время старта полностью зависит от программы предстоящего полета. Если полет автономный и предполагается в основном дистанционное зондирование звезд, то старт возможен в любое время и основные ограничения относятся к желаемым условиям посадки в конце полета.

Если стартующему кораблю предстоит стыковка, например с орбитальной станцией, то ему необходимо стартовать \по принятой нашими учеными схемой стыковки\ в момент прохождения станции над космодромом. Всякие отклонения в ту или иную сторону влекут за собой дополнительные энергозатраты для коррекции орбиты корабля после вывода его на орбиту.

Кроме того, всегда желательно, чтобы космический корабль после завершения полета приземлялся на территории Казахстана или России в светлое время суток. Это значительно облегчает процесс поиска и спасения экипажа.

Обстановка в районе Казахстана \общепринятый район посадки\ по условиям освещенности повторяется через 58 суток. Так что изменение времени старта влечет за собой и ухудшение условий работы экипажа и поисковиков в самый напряженный период завершения полета, когда организм членов экипажа значительно ослаблен, и им чрезвычайно необходима помощь в первые минуты и часы после возвращения на Землю.

При изменении времени старта космического корабля и неизменном наклонении орбиты и ее периода, плоскость орбиты по отношению к Солнцу располагается по разному. Следовательно, в значительных пределах меняются условия освещенности по трассе полета и условиях научных наблюдений Земли.

При расчете времени старта космического корабля обязательно учитывается необходимость контролируемого и точного построения ориентации космического корабля на орбите непосредственно перед будущим возвращением на Землю. Ориентация корабля необходима и перед фотографированием объектов, изучением звезд и перед выполнением других задач, которые требуют приведения космического корабля перед работой в строго определенное положение в пространстве.

Подобные эксперименты также планируются задолго до полета, и четко рассчитываются по времени, так как их выполнение связано с целым комплексом многочисленных условий по взаимному расположению объектов, с динамическими процессами и многим другим.

Важное значение при планировании старта имеет высота апогея и перигея орбиты, на которую выводится космический корабль. Эти величины в течение полета не являются постоянными для любого космического аппарата. На каждом витке, особенно в перигее космический корабль задевает атмосферу и получает определенное торможение. На следующем витке трасса полета проходит еще ниже, а следовательно плотность атмосферы и ее сопротивление увеличиваются, увеличивая при этом и эффект торможения. Как только скорость космического корабля станет ниже 8 километров в секунду, он неминуемо сойдет с орбиты по длинной, растянувшейся на несколько тысяч километров параболе и устремится к Земле. Вот только рассчитать точку посадки в этих условиях чрезвычайно трудно.

С другой стороны, тормозящий эффект атмосферы на высотах ниже 150 километров не позволяет летать за счет инерции. В этих случаях нужна постоянная работа двигателей для поддержания высоты за счет увеличения скорости полета, то есть работе двигателей на разгон. Иначе космический корабль по той же параболе снова устремится к Земле.

Отсюда возникло и такое понятие как время существования космического летательного аппарата на орбите, величина которого равна временному промежутку от выведения космического аппарата на орбиту до его входа в плотные слои атмосферы в пределах 100–150 километров.

Критическим значением периода обращения космического корабля на орбите, при котором еще обеспечивается орбитальный полет, считается время 87,75 минут при высоте 170 километров. Орбита при этом круговая.

Если орбита космического корабля не круговая, а эллиптическая, то очень важным параметром, определяющим время существования, является перигей. Именно в районе этих точек корабль наиболее сильно ощущает плотность атмосферы.

При высоте перигея 100 километров корабль войдет в атмосферу через виток.

При высоте перигея 200 километров время существования корабля уже около ста дней.

При высоте перигея 500 километров время существования корабля достигает десятков лет.

Цифры параметров орбиты могут изменяться в зависимости от многих условий на конкретный момент времени. Играют роль и гравитационные силы, и магнитное поле, и влияние Солнца. Однако ученые на первых этапах пилотируемых космических полетов учитывали в основном факт аэродинамического торможения атмосферы, используя его как один из резервов безопасности полета.

Ниже приводится таблица по космическим кораблям типа «Восток» и «Восход», а также более подробные данные по полету космического корабля «Восток ‑3».

Из таблицы видно, что все космические корабли серии «Восток» выводились на очень низкую орбиту в перигее, обеспечивая тем самым минимально необходимое время существования на орбите.

Если бы Г. Титова или любого другого космонавта, стартовавшего на этих кораблях, забросили бы слишком низко, то они не смогли бы летать больше суток и не выполнили бы программу полета. Атмосфера заставила бы их корабли приземлиться раньше.

В случае же, если бы корабль при старте забросили бы слишком высоко, а тормозная двигательная установка отказала, то корабль мог бы крутиться на орбите слишком долго и имеющиеся системы жизнеобеспечения не помогли бы космонавту выжить в этом полете. Их ресурс не рассчитан на значительное увеличение продолжительности существования человека в космическом полете.

Проводя дальнейшие расчеты снижения космического корабля «Восток‑3» можно узнать, когда бы он приземлился в случае отказа тормозной двигательной установки. Для этого каждый может построить график снижения и убедиться в том, что не позже чем через 10 суток корабль сел бы за счет самоторможения.

Зная, что система жизнеобеспечения «Востоков» позволяла космонавту жить на орбите до 10 суток, можно наглядно убедиться в степени безопасности полетов космонавтов на этих кораблях при условии отличной работы стартовой команды.

Система жизнеобеспечения космических кораблей США в первых полетах обеспечивала существование астронавтов на орбите до трех суток. Их корабли поднимались на орбиту не выше 160 километров, что также обеспечивало им возможность возвращения в допустимые сроки.

Да, на первых порах ученые были очень осторожны в своих решениях и пытались обеспечить максимальную безопасность космонавтов. Во всяком случае, до тех пор, пока не была полностью отработана техника стартов. Сейчас, изготовленные на заводе, космический корабль и ракета‑носитель доставляются на космодром Байконур и здесь в монтажно‑испытательном корпусе \ МИКе\ собираются в единое целое.

Длина МИКа более 100 метров, высота с пятиэтажный дом. Поэтому сборка всех основных частей комплекса корабля и ракеты осуществляется горизонтальным способом и в таком же положении на железнодорожной платформе весь комплекс в сборе доставляется на стартовую позицию, расположенную в 1,5–2 километрах.

Обычно вывоз ракеты‑носителя с космическим кораблем выполняют рано утром. И будь то зимой или летом, в леденящую стужу или знойную жару, вокруг состава, забегая с разных сторон, а то и забираясь в вертолет, снимают и снимают торжественный выезд фотокорреспонденты и кинооператоры.

Сама стартовая позиция не очень большая. Квадрат железобетона с отверстием в центре для хвостовой части ракеты‑носителя. Мощный установщик устанавливает ракету‑носитель в вертикальное положение, и как бы вставляет в пусковую систему, жестко закрепляя в верхней и нижней частях с помощью специальных ферм. Сюда же подводятся кабельная и заправочная мачты и ферма обслуживания.

Несмотря на тщательную проверку всех систем и агрегатов в МИКе, на стартовой площадке все проверки повторяются вновь. Ведь положение ракетно‑космического комплекса изменилось с горизонтального на вертикальный, что могло привести к каким то изменениям в работе систем. Да и сама транспортировка могла внести коррективы в состояние систем.

В конце проверок ракета‑носитель заправляется топливом и сжатыми газами.

В бункере командного пункта запуска руководитель работ, оценив все доклады, дает команду готовить космонавтов к посадке в корабль. Начинается отсчет времени непосредственной подготовки к полету.

Космонавты на площадке задерживаются не долго. Доклад, последние приветствия, пожелания, и они скрываются в лифте, а через несколько минут выходят на связь с командным пунктом со своих рабочих мест.

Космонавты и ракетно‑космический комплекс готовы к старту.

Во время старта, как и во время стыковки, космонавты, космонавты находятся в скафандрах вентиляционного типа, которые не претерпели особых изменений со времен старта Ю. Гагарина. Хотя и был период, когда космонавты стартовали в космос без скафандров.

Нахождение в скафандре связано с повышением безопасности космонавтов в период работы на особо опасных участках полета.

Экипаж космического корабля «Восход» работал без скафандров

П. Беляев и А. Леонов находились в скафандрах только потому, что планировался выход в открытый космос.

В конечном итоге жизнь заставила конструкторов и космонавтов вернуться к варианту старта в скафандрах.

На выход в космос А. Леонова американцы ответили серией из пяти космических полетов космических кораблей «Джемини».

23 МАРТА.

На орбиту выведен космический корабль «Джемини‑3» с экипажем Вирджил Гриссом и Джон Янг. Длительность полета 4 часа 53 минуты. Корабль испытан в пилотируемом варианте. Астронавты изменяли наклон и высоту орбиты, вручную сориентировали корабль перед спуском, включили тормозную двигательную установку.

Для Гриссома это был второй полет в космос.

3 ИЮНЯ.

На орбиту выведен космический корабль Джемини‑4» с экипажем Джеймс Макдивитт и Эдвард Уайт. Полет продолжался 4 суток. В этом полете возвращаемый аппарат на орбите был разгерметизирован, и астронавт Уайт вышел в открытый космос без использования шлюзовой камеры. В космосе он передвигался не только с помощью фала, как Леонов. Для перемещения использовалась малогабаритная реактивная установка. Но от фала астронавт не освобождался. Страховка оставалась.

Для отработки операции стыковки было выполнено сближение со второй ступенью ракеты‑носителя на дистанцию 120–600 метров по разным оценкам.

21 АВГУСТА.

На орбиту введен космический корабль «Джемини‑5» с экипажем Гордон Купер и Чарльз Конрад. Полет продолжался более семи суток, значительно перекрыв рекорд В. Быковского. Были выполнены различные виды маневров с помощью двигателей корабля и наблюдение объектов в космосе, на земле и в океане. Астронавты работали с бортовой цифровой вычислительной машиной и радиолокатором, наблюдая за предварительно выброшенным контейнером.

Гордон Купер совершил свой второй космический полет.

28 ОКТЯБРЯ.

В слушатели отряда космонавтов зачислены еще 23 человека. Вот только перспективы будущих космических полетов остаются туманными. Следовательно, конкуренция кандидатов на полет будет очень серьезной.

4 ДЕКАБРЯ.

На орбиту выведен космический корабль «Джемини‑7» с экипажем Фрэнк Борман и Джеймс Ловелл. Длительность полета уже 13 суток и 18 часов.

Уже в начале полета корабль сближался с ракетой‑носителем до дистанции 15–20 метров. Затем Борман вручную осуществил ориентацию по звезде Спика, и изменил орбиту в перигее, повысив ее на 61 километр.

На вторые сутки астронавты сняли скафандры. Снова маневрировали и перешли на круговую орбиту, которая обеспечивала встречу с космическим кораблем «Джемини‑6А».

15 ДЕКАБРЯ.

На орбиту выведен космический корабль «Джемини‑6А» с экипажем Уолтер Ширра и Томас Стаффорд. Длительность полета 1 сутки. Первоначально их полет должен был состояться позже. Но ракету «Аджена», с которой должен был состыковаться экипаж «Джемини‑7», не смогли запустить в космос.

Руководство НАСА приняло решение проверить все этапы стыковки с помощью двух пилотируемых кораблей. Так в космосе срочно оказался корабль «Джемини‑6А».

Томас Стаффорд и Уолтер Ширра мастерски выполнили все операции. Они подходили к кораблю «Джемини‑7» на расстояние от 1 до 30 метров, совершили облет корабля. Могли бы и состыковаться, но на кораблях были несовместимые стыковочные устройства. Поучилась отличная генеральная репетиция.

Уолтер Ширра стал уже третьим астронавтом, которые дважды побывали в космосе. Их можно было уже называть профессионалами космоса.

Возвращаемые аппараты космических кораблей «Джемини‑6А» 16 декабря, а «Джемини‑7» 18 декабря успешно приводнились в океане.

 

ГОД

 

ЯНВАРЬ.

14 января умер Сергей Павлович Королев. Без него развитие космонавтики в нашей стране еще больше затормозилось.

За весь 1966 год в СССР не было выполнено ни одного пилотируемого космического полета. Под большим вопросом был и первый пилотируемый полет космического корабля «Союз», разработка которого шла трудно.

Космонавты, в сложившейся сложной ситуации, использовали любую возможность, чтобы как можно лучше подготовить себя к предстоящим космическим полетам. Комплексный тренажер космического корабля «Союз» работал на полную загрузку.

А США вновь вывели на орбиту 5 космических кораблей «Джемини».

16 МАРТА.

На орбиту выведен космический корабль «Джемини‑8» с экипажем Нил Армстронг и Дэвид Скотт. Длительность полета 10 часов 41 минута. Но за это время астронавты сумели состыковаться с ракетой‑целью «Аджена». Правда, из‑за неисправности в системе двигателей, корабль находился в состыкованном состоянии 20 минут. Затем расстыковался и благополучно приводнился в океане.

В ходе полета не выполнен выход в открытый космос, из‑за аварии двигателя и решения руководства о срочном возвращении экипажа.

А в Центре подготовки космонавтов, наконец то, началась пора новоселий. Все космонавты переехали в новые квартиры в своем гарнизоне. 6 лет они ждали этого момента.

3 ИЮНЯ.

На орбиту выведен космический корабль «Джемини‑9«с экипажем Томас Стаффорд и Юджин Сернан. Длительность полета 3 суток. Стаффорд в космосе второй раз. Почти в каждом экипаже есть астронавт, ранее побывавший в космосе.

Экипаж с расстояния более 1000 километров в течении 4 часов приблизился к спутнику. Затем еще в течение двух суток астронавты совершали маневры вокруг спутника, приближаясь к нему на расстояние в несколько сантиметров. Но как и шесть месяцев назад для Стаффорда это была лишь прекрасная тренировка. Обтекатель на спутнике не сошел со стыковочного узла. Так что настоящую стыковку выполнить было просто невозможно.

В конце полета Сернан вышел в открытый космос через люк корабля. В космосе он пробыл 2 часа 5 минут. Из‑за запотевания стекла шлема выход сократили. Сернан не смог испытать реактивную установку для передвижения в космосе.

Возвращение астронавтов было успешным.

18 ИЮЛЯ.

На орбиту выведен космический корабль» Джемини‑10» с экипажем Джон Янг и Майкл Коллинз. Длительность полета почти трое суток. Янг в космосе второй раз. Через 5 часов экипаж сблизился с ракетой «Аджена‑10», состыковался с ней. Связка ракеты и корабля трижды меняла параметры орбиты, прежде чем расстыковаться.

Затем последовало сближение с ракетой «Аджена‑8» и Коллинз, выйдя в открытый космос, перешел \ вернее перелетел, используя реактивную установку для передвижения\ на стыковочный узел ракеты, снял с нее некоторые элементы.

Приводнение астронавтов было успешным.

12 СЕНТЯБРЯ.

На орбиту выведен космический корабль «Джемини‑11» с экипажем Чарльз Конрад и Ричард Гордон. Длительность полета 3 суток. И снова командир экипажа Конрад в космосе во второй раз.

С ракетой мишенью на этот раз каждый астронавт стыковался дважды, получая бесценный опыт стыковки на орбите. Обнаружение ракеты бортовым локатором было произведено с дистанции 93 километров. Далее сближение с ракетой. На расстоянии 50 метров локатор стал давать неверные показания, и Конрад первую стыковку провел визуально вручную.

На вторые сутки после четвертой стыковки, Гордон вышел в открытый космос, прошел по кораблю, и соединил корабль и ракету нейлоновым тросом.

После возвращения Гордона в корабль, вся связка ракета и корабль были подняты на высоту 1372 километра с помощью двигателей ракеты.

Через два витка корабль снова вернулся на обычную высоту орбиты. Ракета была отстыкована от корабля, и астронавты провели некоторые динамические операции при связке через нейлоновый трос. Затем трос был отстрелен.

11 НОЯБРЯ.

На орбиту выведен космический корабль «Джемини‑12» с экипажем Джеймс Ловелл и Эдвин Олдрин. Длительность полета 3 суток 22 часа 35 минут. Ловелл в космосе второй раз. Программа полета почти полностью повторяла предыдущий полет. Олдрин трижды выходил в открытый космос, общей продолжительностью 5,5 часов. Каждый космонавт собственноручно провел стыковку с ракетой.

На этом программа полетов космических кораблей «Джемини» была завершена. Астронавты получили огромный практический опыт по стыковке на орбите и выполнении различных операций во время выходов в открытый космос. Далее начиналась программа полетов на космических корабля «Аполлон» и полет к Луне.

Нашим космонавтам оставалось только завидовать своим американским коллегам. В их распоряжении, был только тренажер космического корабля «Союз», много теории и никакой практики космических полетов.

За прошедшие годы американцы совершили 16 космических полетов. 20 человек побывало в космосе. Из них дважды – 7 человек.

В СССР за это время было выполнено 8 космических полетов. Слетало в космос 11 человек. Ни один не слетал дважды.

 

ГОД

 

Завершив полеты по программе «Джемини», американцы почти сразу приступили к подготовке пилотируемого полета космического корабля «Аполлон». Уж в феврале был запланирован первый пилотируемый полет корабля с базовым основным блоком.

27 января на космодроме корабль был установлен на ракету‑носитель. Назначен экипаж в составе: Вирджил Гриссом, Эдвард Уайт и Роджер Чаффи. Двое первых астронавтов уже побывали в космосе. Уайт был первым американцем, вышедшим в открытый космос.

В этот день экипаж отрабатывал в корабле методику своих действий в корабле при запуске. Астронавты находились в скафандрах.

За 10 минут до окончания тренировки в командном отсеке экипажа возник пожар. В кислородной атмосфере отсека огонь распространился мгновенно. Но астронавты погибли не от огня, а от удушья, надышавшись дымом от горевших материалов в отсеке.

В нормальной обстановке для срочного покидания отсека астронавтам отводилось 3 минуты. Для этого нужно был повернуть рукоятку выходного люка на 200 градусов, и открыть люк во внутрь отсека. Но давление в отсеке за несколько секунд поднялось до 2, 5 атмосфер. Преодолеть такую силу, да еще в скафандрах астронавты просто физически не могли.

Давление было настолько велико, что треснул пол отсека. Давление упало до атмосферного, но астронавты к этому времени уже ничего не могли сделать.

Спасательная команда добралась к экипажу через 5 минут, но было уже поздно. Экипаж погиб. Природа взяла у людей вторую реальную жертву на пути к космосу, предупредив, что на этом пути Человечеству нужно быть чрезвычайно осторожным и внимательным.

НАСА приняло ряд мер для повышения безопасности астронавтов. Однако главная причина – кислородная атмосфера в корабле не была устранена. Почти до самого старта в корабле поддерживали состав атмосферы приближенной к земному. Непосредственно перед стартом атмосфера в корабле продувалась и заполнялась кислородом при давлении 0,35 килограмм на квадратный сантиметр. В полете они дышали только кислородом.

Такая авария естественно не могла не сказаться на сроках выполнения всей программы Аполлон». Полеты 1967 года отменили. Совершенствовали системы, тщательнее готовились к полету.

Для Советского Союза сложившаяся ситуация давала шанс, если и не перегнать американцев в качестве космических полетов, то хотя бы догнать их. Нужно было дать путевку в жизнь космическому кораблю «Союз», и отработать с его помощью все варианты стыковки двух объектов на космической орбите.

Космический корабль «Союз» был принципиально новой разработкой, в которой конструкторы учли все недостатки и преимущества предшестующих космических кораблей. Он состоял из трех отсеков: спускаемого аппарата, орбитального обитаемого отсека \бытовой отсек\ и приборно‑агрегатного отсека.

В дальнейшем, сохраняя в неизменности корпус корабля, разработчики почти полностью заменили оборудование и бортовые системы. Существенно менялись при этом характеристики кораблей.

Масса заправленного и укомплектованного корабля, в зависимости от решаемых задач, составляла от 6.38 до 6,85 тонн. Экипаж составлял 2–3 человека. Длина корабля 6,98 – 7,13 метра. Максимальный диаметр 2,72 метра. Размах панелей солнечных батарей 8,37 и до 10,6 метра. Свободный объем для экипажа 6,5 кубических метров.

Возвращаемый \спускаемый\ аппарат имел в отличие от «Востоков» каплевидную форму. Свободный объем для экипажа составлял 2,5 кубометра.

Корпус аппарата выполнялся из алюминиевого сплава и имел значительную защиту. Основной теплозащитный экран на участке парашютирования, после выполнения своей задачи, отстреливался. В верхней части корпуса имелся люк диаметром 0,8 метра для сообщения с орбитальным отсеком. Через этот же люк экипаж покидает спускаемый аппарат после приземления. Имеются три иллюминатора – два боковых свободных и один в центре для визира ориентатора. В корпусе размещены два контейнера – основного и запасного парашютов.



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-14 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: