Функциональное назначение выводов




Выводы 14 (ВХ1 «+»),13 (ВХ1 «–»)

Выводы 13 и 14 являются управляющими входами драйвера. Управление осуществляется подачей на них логических уровней ТТЛ. Вход Вх1 «+» является прямым, то есть при подаче на него логической 1 происходит открытие силового транзистора, а при подаче 0 — его закрытие. Вход Вх1 «–» является инверсным, то есть при подаче на него логической 1 происходит закрытие силового транзистора, а при подаче 1 — его открытие. Обычно Вх1 «–» подключается к общему проводнику входной части драйвера, а по входу Вх1 «+» производится управление им. Инвертирующее и неинвертирующее включение драйвера представлено на рис.4.

Рис. 4. Инвертирующее и не инвертирующее включение драйвера

 

В таблице 3 приведена диаграмма состояния одного канала драйвера.

Электрическая изоляция между входной и выходной частью драйвера на этих выводах осуществляется с помощью оптронов. Благодаря их применению исключается возможность воздействия переходных процессов, возникающих на силовом транзисторе, в схему управления.

 

Таблица3. Диаграмма состояний одного канала драйвера

Вх1+ Вх1– Напр на затворе < нормы Напр на затворе > нормы Ст Ст «+Е пит» Вых
Х Х + Х Х L L
x x x + l Н l
l x x x x Н l
x H x x x H l
H l - - H H H

Входная схема имеет встроенную защиту, исключающую открытие обоих силовых транзисторов полумоста одновременно. Если на управляющие входы обоих каналов подать активный управляющий сигнал, то произойдет блокирование схемы, и оба силовых транзистора будут закрыты.

Рис. 6. Временная диаграмма работы 2-канального драй вера и силовых транзисторов при совместном управлении каналами одним управляющим сигналом

 

Модули драйвера должны располагаться как можно ближе к силовым транзисторам и соединяться с ними максимально короткими проводниками. Входы Вх1 «+» и Вх1 «–» могут быть соединены со схемой управления и контроля проводниками длиной до 25 см.

Рис. 7. Временная диаграмма работы 2-канального драйвера при раздельном управлении каналами

 

Причем проводники должны идти параллельно. Кроме того, входы Вх1 «+» и Вх1 «–» можно соединить со схемой управления и контроля с помощью витой пары. Общий проводник к входной схеме должен всегда подводиться отдельно для обоих каналов для обеспечения надежной передачи управляющих импульсов.

Принимая во внимание, что надежная передача управляющих импульсов происходит в случае очень длинного импульса, то полная конфигурация должна быть проверена в случае минимально короткого управляющего импульса.


 

Вывод 12 (СТ «+Е пит»)

Вывод 12 является статусным выходом, подтверждающим наличие питания (+18 В) на выходной (силовой) части драйвера. Он собран по схеме с открытым коллектором. При нормальной работе драйвера (наличии питания и достаточном его уровне) статусный вывод соединяется с общим выводом управляющей схемы с помощью открытого транзистора. Если этот статусный вывод подключить по схеме, представленной на рис.5, то аварийной ситуации будет соответствовать высокий уровень напряжения на нем (+5 В). Нормальной работе драйвера будет соответствовать низкий уровень напряжения на этом статусном выводе. Типовое значение протекающего тока через статусный вывод соответствует 10 мА, следовательно, номинал резистора R рассчитывается по формуле R =U/0,01,

Рис. 5. Схема подключения статусного вывода 12

где U — питающее напряжение. При снижении напряжения питания ниже 12 В происходит выключение силового транзистора и блокировка работы драйвера.

Вывод 11 (Сз)

К выводу 11 подключается дополнительный конденсатор, увеличивающий время задержки между входным и выходным импульсом tвкл на драйвере. По умолчанию (без дополнительного конденсатора) это время ровно 1 мкс, благодаря чему на импульсы короче 1 мкс драйвер не реагирует (защита от импульсных помех). Основным назначением этой задержки является исключение возникновения сквозных токов, возникающих в полумостах. Сквозные токи вызывают разогрев силовых транзисторов, срабатывание аварийной защиты, увеличивают потребляемый ток, ухудшают КПД схемы. Благодаря введению этой задержки обоими каналами драйвера, нагруженного на полумост, можно управлять одним сигналом в форме меандра.

Требуемое время задержки, мкс Устанавливаемая емкость, пФ
   
   
   

К примеру, модуль 2MBI 150 имеет задержку по выключению 3 мкс, следовательно, чтобы исключить возникновение сквозных токов в модуле при совместном управлении каналами, нужно поставить дополнительную емкость не менее 1200 пФ на оба канала.

Для снижения влияния окружающей температуры на время задержки необходимо выбирать конденсаторы с малым ТКЕ.

Вывод 10 (СТ)

Вывод 10 является статусным выходом аварии на силовом транзисторе первого канала. Высокому логическому уровню на выходе соответствует нормальная работа драйвера, а низкому уровню — авария. Авария возникает в случае превышения напряжения насыщения на силовом транзисторе порогового уровня. Максимальный ток, протекающий по выходу, составляет 8 мА.

Вывод 9 (БЛОК)

Вывод 9 является управляющим входом драйвера. При подаче на него логической единицы происходит блокировка работы драйвера и подача запирающего напряжения на силовые транзисторы. Вход блокировки является общим для обоих каналов. Для нормальной работы драйвера надо подать на этот вход логический ноль.

Выводы 7 (+5 В) и 6 (общий)

Выводы 6 и 7 являются входами для подключения питания к драйверу. Питание осуществляется от источника мощностью 8 Вт и выходным напряжением 5 ± 0,5 В. Питание необходимо подключить к драйверу проводниками небольшой длины (для уменьшения потерь и увеличения помехозащищенности). В случае, если соединяющие проводники имеют длину более 25 см, необходимо между ними как можно ближе к драйверу ставить помехоподавляющие емкости (керамический конденсатор емкостью 0,1 мкФ).

Вывод 15 (ИК)

Вывод 15 (измерительный коллектор) подключается к коллектору силового транзистора. Через него осуществляется контроль напряжения на открытом транзисторе. В случае КЗ или перегрузки напряжение на открытом транзисторе резко возрастает. При превышении на коллекторе транзистора порогового значения напряжения происходит запирание силового транзистора и срабатывает статус аварии СТ. Временные диаграммы процессов, протекающих в драйвере при срабатывании защиты, приведены на рис.8. Порог срабатывания защиты можно снизить подключением последовательно соединенных между собой диодов, причем пороговая величина напряжения насыщения U нас. пор.=7 –n U пр.VD, где n — количество диодов, U пр.VD — падение напряжения на открытом диоде.

Рис. 8. Временная диаграмма работы драйвера при срабатывании защиты по напряжению насыщения на транзисторе

В случае, если питание силового транзистора осуществляется от источника 1700 В, необходимо установить дополнительный диод напряжением пробоя не ниже 1000 В. Катод диода подключается к коллектору силового транзистора. Время срабатывания защиты можно регулировать с помощью вывода 16-ИК1.

 

Вывод 8 не используется.

Вывод 16 (ИК1)

Вывод 16 (измерительный коллектор) в отличие от вывода 15 не имеет встроенного диода и ограничительного резистора. Он необходим для подключения конденсатора, который определяет время срабатывания защиты по напряжению насыщения на открытом транзисторе. Эта задержка необходима для того, чтобы исключить влияние на схему помехи. Благодаря подключению конденсатора время срабатывания защиты увеличивается пропорционально емкости t блокировки =4 С U нас. пор., где C — емкость конденсатора, пФ. Это время суммируется со временем внутренней задержки драйвера t выкл(10%)=3 мкс. По умолчанию в драйвере стоит емкость С =100 пФ, следовательно, задержка срабатывания защиты составляет t =4 100 6,3+t выкл (10%)=5,5 мкс. В случае необходимости это время можно увеличивать, подключая емкость между 16 выводом и общим проводом питания силовой части.

Выводы 17 (вых.2)и 18 (вых.1)

Выводы 17 и 18 являются выходами драйвера. Они предназначены для подключения силовых транзисторов и регулировки времени их включения. По выводу 17 (вых.2) происходит подача положительного потенциала (+18 В) на затвор управляемого модуля, а по выводу 18 (вых.1)— отрицательного потенциала (–5 В). В случае необходимости обеспечения крутых фронтов управления (порядка 1 мкс) и не очень большой мощности нагрузки (два модуля 2MBI 150, включенных параллельно) допустимо прямое соединение этих выходов с управляющими выводами модулей. Если нужно затянуть фронты или ограничить ток управления (в случае большой нагрузки), то модули необходимо подключать к выводам 17 и 18 через ограничивающие резисторы.

Рис.9. Схеме с ограничивающими резисторами

 

В случае превышения напряжения насыщения порогового уровня происходит защитное плавное снижение напряжения на затворе управляющего транзистора. Время снижения напряжения на затворе транзистора до уровня 90%t выкл (90%)=0,5мкс, до уровня 10%t выкл(10%)=3 мкс. Плавное снижение выходного напряжения необходимо для того, чтобы исключить возможность возникновения скачка напряжения.

Выводы 19 (–E пит), 20 (Общ.) и 21 (+E пит)

Выводы 19, 20 и 21 являются выходами питания силовой части драйвера. На эти выводы поступает напряжение с DC/DC-преобразователя драйвера. В случае использования драйверов типа МД215, МД250, МД280 без встроенных DC/DC-конверторов сюда подключаются внешние источники питания: 19 вывод –5 В, 20 вывод — общий, 21 вывод +18 В на ток до 0,2 А.


Расчёт и выбор драйвера

Исходными данными для расчета является входная емкость модуля С вх или эквивалентный заряд Q вх, входное сопротивление модуля R вх, размах напряжения на входе модуля.U =30 В (приводятся в справочной информации по модулю), максимальная рабочая частота, на которой работает модуль f max.

Необходимо найти импульсный ток, протекающий через управляющий вход модуля Imax, максимальную мощность DC/DC-преобразователя P.

На рис.10 приведена эквивалентная схема входа модуля, которая состоит из емкости затвора и ограничивающего резистора.

Рис. 10. Эквивалентная схема входамодуля

 

Если в исходных данных задан заряд Q вх, то необходимо пересчитать его в эквивалентную входную емкость C вх =Q вх /DU.

Реактивная мощность, выделяемая на входной емкости модуля, рассчитывается по формуле Рс =f Q вх DU. Общая мощность DC/DC-преобразователя драйвера Р складывается из мощности, потребляемой выходным каскадом драйвера Рвых, и реактивной мощности, выделяемой на входной емкости модуля Рс: Р =Р вых +Рс.

Рабочая частота и размах напряжения на входе модуля при расчетах взяты максимальными, следовательно, получена максимально возможная при нормальной работе драйвера мощность DC/DC-преобразователя.

Зная сопротивление ограничивающего резистора R, можно найти импульсный ток, протекающий через драйвер: I max =DU/R.

По результатам расчетов можно произвести выбор наиболее оптимального драйвера, необходимого для управления силовым модулем.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-10-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: