Общая этиология, патогенез, саногенез 3 глава




Инсулинонезависимый сахарный диабет

Это - внепанкреатический сахарный диабет, диабет II типа. Он не связан с поражением b-клеток. В этом случае содержание инсулина в крови нормальное.

В развитии этого типа сахарного диабета играют роль факторы риска: 1) избыточное питание (ожирение), 2) генетические дефекты инсулиновых рецепторов, 3) патология эндокринных желез.

Выделяют 2 механизма:

1. Механизмы инсулиновой резистентности клеток

2. Контринсулярный механизм

Механизмы инсулиновой резистентности клеток

Клетки имеют инсулиновые рецепторы. Они определяют активность перехода глюкозы в клетку. Инсулиновые рецепторы могут быть ареактивны. Они могут быть блокированы жирными кислотами. При избыточном питании углеводами рецепторы могут разрушаться и становиться аутоаллергенами. Аутоаллергены вызывают выработку аутоантител (Ig G) и, как следствие, образование патоиммунного комплекса, который блокирует рецепторы. Может быть генетический дефект рецепторов.

Контринсулярный механизм

 

Адреналин, глюкагон, тироксин

 

Глюкоза -------------------------------------------------------------- Гликоген

 

СТГ, АКТГ, кортизол

Аминокислоты

 

В этом механизме играют роль гормоны противоположные по своему действию инсулину. Это - СТГ, АКТГ, тироксин, кортизол, глюкагон, адреналин.

Адреналин, глюкагон и тироксин стимулируют распад гликогена до глюкозы (процесс гликогенолиза). Развивается гипергликемия. Избыточное образование глюкозы также возможно из аминокислот (процесс гликонеогенеза) вследствие стимуляции этого процесса под влиянием СТГ, АКТГ, кортизола.

ПАТОФИЗИОЛОГИЯ ЖИРОВОГО ОБМЕНА

Основные этапы нарушения жирового обмена:

1. Нарушение переваривания

2. Нарушение всасывания

3. Нарушение промежуточного обмена

4. Нарушение нейрогуморальной регуляции

Нарушение переваривания

Расщепление жиров в кишечнике происходит при участии панкреатической липазы. Секреция липазы и ее активность зависит от активности дигестивных гормонов (холецистокинина, секретина), которые вырабатываются в слизистой тонкой кишки. При воспалительных процессах желудочно-кишечного тракта выработка этих гормонов нарушается, что влияет на характер переваривания жиров. Секретин определяет количество выделяемого сока поджелудочной железой и липазы. Качество панкреатического сока и активность липазы определяется холецистокинином. Причинами нарушения выработки панкреатического сока и липазы являются воспалительные процессы в поджелудочной железе, сдавление и спазм протоков, камни в протоках. Важную роль в переваривании жиров играет желчь. Желчь эмульгирует жиры и они легче поддаются действию липазы. Холецитокинин способствует выходу желчи из печени в кишечник. Нарушение желчевыделения может быть связано с воспалительными процессами в печени и желчных путях, дискинезиями, желчнокаменной болезнью. Проявлениями нарушений процессов переваривания являются болевой синдром и развитие стеаторреи - жирного поноса. В норме из организма выводится около 10% жиров, при нарушении переваривания - до 50%.

Нарушение всасывания

Для нормального всасывания жиры должны связываться с желчными кислотами и образовывать мицеллы. Дальнейшее всасывание жирных кислот происходит с участием энтероцитов, которые извлекают жирные кислоты из мицелл. Около 5% жирных кислот поступает в кровь путем простой диффузии. Основная масса жиров ресинтезируется с образованием триглицеридов. В крови жирные кислоты связываются с белками (альбуминами) и образуют липопротеиновые комплексы. Основным местом их образования является печень. Нарушение всасывания жирных кислот наблюдается при воспалении желудочно-кишечного тракта (энтериты), дистрофических процессах в слизистой кишечника, при увеличении содержания ионов кальция, связывающего жирные кислоты и затрудняющего поступления их из кишечника в кровь, при гиповитаминозе А и С. Нарушение всасывания жирных кислот приводит к гиполипемии - снижению содержания липидов в крови. Развивается гипоэргоз, нарушается всасывание жирорастворимых витаминов - А, Д, К, Е, развивается полигиповитаминоз. Нарушение всасывания липидов сопровождается диспепсией

Нарушение промежуточного обмена жиров

Расстройства этого этапа проявляются в виде:

1. Гиперлипемии

2. Кетоза

3. Нарушения пероксидного окисления липидов

Гиперлипемия

Гиперлипемия - это повышение уровня липидов в крови свыше 7±4 г/л. Жирные кислоты в крови связаны с белками и представлены липопротеинами.

Основные формы гиперлипемий

1. Алиментарная гиперлипемия

2. Транспортная гиперлипемия

3. Ретенционная гиперлипемия

4. Идиопатическая гиперлипемия

Алиментарная гиперлипемия

Она возникает при избыточном поступлении в организм жирной пищи. Количество нейтральных жиров в крови возрастает через 3 часа.

Транспортная гиперлипемия

Жир

Депо --------------------------Кровь

Липаза

Стресс ----Адреналин Тироксин

СТГ

 

В основе этого вида гиперлипемии лежит рефлекторный механизм. Происходит мобилизация жира из депо в кровь. Транспортная гиперлипемия развивается при стрессе, неврозах, кровопотере. Одним из механизмов такой гиперлипемии является уменьшение содержания в печени гликогена при сахарном диабете. Распад гликогена способствует активации симпатической нервной системы, освобождению адреналина и стимуляции клеточной липазы, которая расщепляет жиры до жирных кислот. Жирные кислоты поступают в кровь.

 

Гликоген ------СНС -------Адреналин ----------Липаза

 

Ретенционная гиперлипемия

Эта форма характеризуется задержкой липидов в циркулирующей крови. Липиды в крови связаны с белками и циркулируют в виде липопротеинов. В крови липопротеины представлены в виде липопротеинов очень низкой плотности (ЛПОНП), липопротеинов низкой плотности (ЛПНП) и липопротеинов высокой плотности (ЛПВП). Они содержат разное количество холестерола и фосфолипидов. ЛПЛНП и ЛПНП сожержат преимущественно холестерол, ЛПВП - фосфолипиды. В норме липопротеиновый комплекс, подходя к клетке, подвергается действию фермента - липопротеинлипазы. Комплекс расщепляется и жирные кислоты поступают в клетку.

Липопротеины

Кровь ----------------------------------Жирные кислоты -----Клетка

липопротеинлипаза

Инсулин Гепарин

Желчные кислоты,

избыток жирных кислот

 

Липопротеинлипаза (ЛПЛ) синтезируется в эпителии капилляров. Она активируется гепарином. При снижении образования гепарина в тучных клетках легких активность липопротеинлипазы снижается, липопротеиновый комплекс не расщепляется и жирные жислоты в комплексе с белками остаются в крови. Активность ЛПЛ снижается также при инсулиновой недостаточности, при ингибировании фермента желчными кислотами, избытком жирных кислот. Липопротеиновый комплекс не образуется при дефиците белков - альбуминов. В этом случае свобоные жирные кислоты накапливаются в крови и не поступают в клетку.

Идиопатическая гиперлипемия

В основе этой формы лежит наследственная недостаточность липопротеинлипазы, генетический дефект синтеза белка.

Гиперлипемия является одним из факторов риска ряда заболеваний: ишемической болезни сердца, атеросклероза, сахарного диабета, опухолевого роста.

Кетоз

В понятие "кетоз" входит накопление в крови кетоновых тел (гиперкетонемия), в моче (гиперкетонурия), жировая дистрофия печени, ацидоз. Избыточное образование кетоновых тел обусловлено нарушением окисления белков, жиров и углеводов в цикле Кребса и нарушением перехода ацетилкоэнзима А (АцКоА) в жиры. В результате этого АцКоА идет на образование кетоновых тел (b-оксибутирата, ацето-ацетата, ацетона).

Жиры

Белки b -оксибутират

Жиры АцКоА ацето-ацетат

Углеводы ацетон

Цикл Кребса

 

В норме количество кетоновых тел в крови составляет около 100 мкмоль/литр. Если их содержание становится выше, то это свидетельствует о развитии гиперкетонемии. В моче содержание кетоновых тел не превышает 1000 мкмоль/литр. Если их выводится больше, чем 1000 ммоль/литр, то это указывает на гиперкетонурию. Избыточное накопление кетоновых тел в организме возникает при гипоксии, стрессе, переутомлении, инфекции, инсулиновой недостаточности. При сахарном диабете жировая дистрофия печени возникает при активации клеточной липазы под влиянием адреналина и СТГ. Жирные кислоты поступают из депо в кровь, затем в печень. Развивается жировая дистрофия печени, миокарда.

Нарушение пероксидного окисления липидов

Пероксидное окисление липидов (ПОЛ) осуществляется с участием кислорода. При гипоксии нарушается окисление липидов, активируется образование свободных радикалов. Преимущественно нарушается окисление ненасыщенных жирных кислот.

Оксигеназы

Ненасыщенные жирные кислоты ------------------------ Гидроперекиси липидов

Цх Р-450

 

Свободные радикалы (ROO, RO2-, О2-, Н2 О2) -----------------------

Накопление гидроперекисей липидов и свободных радикалов наблюдается при нарушении микросомального окисления, дефиците цитохрома Р-450 (Цх Р-450). Происходит повреждение различных компонентов клетки - нуклеиновых кислот, белков, мембран клеток. Это способствует развитию инфаркта миокарда, злокачественного роста, лучевой болезни.

Антиоксидантные системы: токоферол, каротины; ферменты разрушающие пероксиды (каталаза, пероксидаза, супероксиддисмутаза), система глутатиона и механизмы, разрушающие белки и восстанавливающие дезоксирибонуклеиновые кислоты.

Нарушение нейрогуморальной регуляции

Этот этап нарушения жирового обмена проявляется в виде:

1. Ожирения

2. Исхудания

Ожирение

Избыточное отложение жира в жировой ткани занимает ведущее место среди других нарушений обмена веществ. Среди взрослого населения от 30% до60% лиц имеет избыточный вес.

По этиологии выделяют ожирение трех видов: церебральное (16-20% случаев), алиментарное (55-66%), гормональное (около 20%).

По характеру накопления жира различают гиперпластическое ожирение, характеризующееся увеличением количества жировых клеток, и гипертрофическое, связанное с увеличением объема жировых клеток.

 

Различают 4 степени ожирения:

1 степень - увеличение веса на 30%

2 степень - увеличение веса на 50%

3 степень - увеличение веса на 100%

4 степень - увеличение веса на 200%

Механизмы ожирения

Различают:

1. Алиментарное ожирение

2. Метаболическое ожирение

Алиментарное ожирение

Алиментарное ожирение возникает при переедании, гиподинамии. В основе его развития лежит повышение реактивности периферических и центральных рецепторов. Повышается порог возбудимости рецепторов желудочно-кишечного тракта, что приводит к изменению реактивности центральных рецепторов. Повышается тонус пищевого центра, в частности, вентролатерального ядра гипоталамуса (центр голода). С другой стороны, снижается возбудимость центра сытости (вентромедиальное ядро гипоталамуса).

Метаболическое ожирение

В основе этого механизма лежат нейрогормональные механизмы.

Основные виды метаболического ожирения

1. Церебральное (гипоталамическое)

2. Гипофизарное

3. Гипотиреоидное

4. Панкреатическое

5. Гипогенитальное

Ожирение при участии нейрогормональных механизмов обусловлено избыточным образованием жира или задержкой его в жировых депо.

Избыточное образование жира

Избыточное образование жира связано с активацией пентозо-фосфатного цикла (ПФЦ) и возрастанием активности фермента никотинамиддинуклеотид фосфат восстановленный (НАДФ.Н). Активация ПФЦ может быть наследственного происхождения, при гиперсекреции инсулина, образовании жира из аминокислот.

АцКоА

Глюкоза, аминокислоты -----------------------------------------жир

НАДФ.Н

 

ПФЦ ---------------- Инсулин

 

Задержка жира в депо

Задержка жира в жировых депо обусловлена снижением активности фермента липазы, нарушением расщепления жиров и замедлением поступления липидов в кровь. Угнетение активности липазы может возникать при снижении тонуса симпатической нервной системы и уменьшении выработки адреналина, при гиперсекреции инсулина.

Жировые депо ---------------------кровь

Тироксин, СТГ липаза ----------адреналин -----СНС

Исхудание

Исхудание обусловлено уменьшением поступления и всасывания жиров (голодание, воспалительные процессы желудочно-кишечного тракта) и нарушением отложения жиров в депо, при нарушении нейрогормональной регуляции жирового обмена, связанное с повышением активности симпатической нервной системы, при стрессе.

 

Патофизиология водно-солевого обмена

Функции воды в организме:

1. В жидкой среде происходят обменные процессы

2. Вода входит в состав слюны, желудочного и кишечного соков, крови, лимфы

3. Вода выводит из организма метаболиты

4. Вода выполняет механическую функцию

5. Вода выполняет терморегуляторную функцию

6. Вода выполняет транспортную функцию

Содержание воды у новорожденного составляет 70% массы тела.

Вода - 70%

Внеклеточная Внутриклеточная

вода - 40% вода - 30%

 

У взрослых содержание воды меньше и составляет 60% массы тела.

Вода - 60%

Внеклеточная Внутриклеточная

вода - 20% вода - 40%

 

При этом основную массу воды (40%) составляет внутриклеточная вода.

Патология водно-солевого обмена связана с нарушением обмена внутриклеточной воды. Уменьшение или увеличение ее на 10% опасно для клеток, на 20% - смертельно, клетки погибают.

Изменение водного баланса в организме проявляется в виде:

I. Положительного водного баланса (гипергидратации)

II. Отрицательного водного баланса (гипогидратации, дегидратации, обезвоживания).

Положительный водный баланс

Выделяют:

I. Генерализованную (общую) гипергидратацию

II. Регионарную (местную) гипергидратацию

Генерализованная гипергидратация характеризуется тем, что количество воды увеличивается во всех тканях и органах. Генерализованная гипергидратация характеризуется накоплением воды с разной концентрацией осмотических веществ, в первую очередь, натрия.

 

 

Различают:

1. Гиперосмолярную гипергидратацию

2. Изоосмолярную гипергидратацию

3. Гипоосмолярную гипергидратацию

Гиперосмолярная гипергидратация

Гиперосмолярная гипергидратация развивается при трансфузии гипертонических растворов, при употреблении морской воды. В этом случае происходит накопление в организме не только воды, но и электролитов. В норме содержание солей в организме 280-320 мосм/литр. При этой форме гипергидратации содержание солей в межклеточном пространстве увеличивается. Повышение осмотического давления в межклеточном пространстве вызывает переход воды из клеток в сторону высокого осмотического давления. Уменьшвается количество воды в клетках. Нарушается функция клеток. Таким образом, гиперосмолярная гипергидратация сочетается с дегидратацией (обезвоживанием) клеток.

Изоосмолярная гипергидратация

При этой форме гипергидратации происходит накопление в организме изоосмолярной жидкости. Осмолярность плазмы примерно равна 300 мосм/литр. Изоосмолярная гипергидратация возникает при трансфузии изоосмолярных растворов. Различают также алиментарную форму. Такая форма изоосмолярной гипергидратации наблюдается при избыточном потреблении углеводов. 1 молекула углеводов связывает 3 молекулы воды. Особенно часто такая форма наблюдается у детей. Дети рыхлые, пастозные; нарушается клеточный метаболизм. Изоосмолярная гипергидратация развивается при избытке в организме жирных кислот и холестерина. Они способны образовывать с водой комплекс "Вода+жирные кислоты", "Вода+холестерин". При изоосмолярной гипергидратации увеличивается и межклеточная, и внутриклеточная вода.

Гипоосмолярная гипергидратация

При этой форме гипергидратации концентрация осмолярных веществ в межклеточном пространстве ниже 270 мосм/литр. Гипоосмолярная гипергидратация возникает при массивных трансфузиях гипотонических растворов. В развитии гипоосмолярной гипергидратации играет роль антидиуретический гормон (АДГ). При гиперсекреции АДГ усиливается реабсорбция воды в почечных канальцах. Вода накапливается в межклеточном пространстве, и осмолярность интерстициальной жидкости снижается. Содержание же солей в клетке выше, чем во внеклеточном пространстве, и жидкость поступает из межклеточного пространства в клетку. Развивается внутриклеточная гипергидратация. Набухание клеток вызывает нарушение всех функций систем и органов. Происходит снижение активности ферментов, развивается гипоксия, нарушается обмен веществ. Развивается отек мозга, явления аутоинтоксикации. Все эти расстройства можно охарактеризовать как синдром водного отравления.

Регионарная гипергидратация

При регионарной гипергидратации происходит накопление жидкости в межклеточном пространстве. Регионарная гипергидратация относится к изоосмолярной гипергидратации и характеризуется развитием отеков.

Отек - это типовой патологический процесс, характеризующийся регионарным увеличением содержания воды в межклеточном пространстве в результате нарушения общих (нейрогормональных) и местных механизмов регуляции водно-солевого обмена в организме.

Основные виды отеков

1. Сердечные отеки (при сердечной недостаточности)

2. Почечные отеки (нефритические и нефротические)

3. Аллергические отеки

4. Воспалительные отеки

5. Нейрогенные отеки (при неврозах, истерии - отек гортани, крапивница)

6. Эндокринные отеки (при микседеме)

7. Токсические отеки

8. Кахектические отеки (при голодании, дефиците белка)

Если отечная жидкость скапливается в полостях, развивается водянка. Примером водянки может служить скопление жидкости в брюшной полости и развивается асцит. При накоплении жидкости в подкожно-жировой клетчатке развивается анасарка.

Механизмы развития отеков

Различают:

1. Общие (нейрогормональные) механизмы

2. Местные механизмы (факторы Старлинга).

Общие механизмы развития отека

Накопление воды в организме происходит по механизму патологического осморегулирующего рефлекса. Он включает надпочечниковый и гипоталамо-гипофизарный механизмы.

Пусковым фактором в задержке воды в организме является вторичный гиперальдостеронизм. Включение этого механизма происходит рефлекторно. Раздражение волюморецепторов при уменьшении объема циркулирующей крови (ОЦК), нарушении почечного кровотока стимулирует выработку альдостерона. Альдостерон задерживает ионы натрия. Повышение концентрации ионов натрия вызывает раздражение осморецепторов. В гипоталамусе стимулируется выработка АДГ. Антидиуретический гормон усиливает реабсорбцию воды в проксимальных канальцах. Происходит задержка воды в организме и развивается отек.

Альдостерон Задержка Раздражение Освобождение

натрия осморецепторов АДГ

Раздражение

волюморецепторов Ренин-АТ-2

Реабсорбция

Отек воды в почечных

канальцах

 

Надпочечниковый и гипоталамо-гипофизарный механизмы контролируются Na-уретическим гормоном. При изменении (уменьшении) внутрисердечного объема крови, возникающем при сердечной недостаточности, снижается активность натрий-уретического гормона. Это приводит к гиперсекреции АДГ и альдостерона. Альдостерон задерживает ионы натрия, АДГ стимулирует реабсорбцию воды в почечных канальцах, что приводит к задержке воды в межклеточном пространстве и развитию отека

 

АДГ Усиление

реабсорбции

Na-уретический

гормон Отек

 

Альдостерон Задержка

натрия

 

Местные механизмы развития отека

Это - факторы Старлинга. Они определяют локализацию отека.

1. Гидродинамический фактор

2. Нарушение лимфообращения

3. Осмотический фактор

4. Онкотический фактор

5. Повышение проницаемости сосудистой стенки

6. Гидрофильность коллоидов

7. Снижение противодавления тканей

Гидродинамический фактор

На артериальном конце капилляра жидкость выходит в межклеточное пространство под влиянием эффективного фильтрационного давления, равного 14 мм рт.столба; на венозном конце капилляра реабсорбционное давление равно -6 мм рт.ст., и жидкость возвращается в сосудистое русло. При сердечной недостаточности возрастает венозное давление и часть транссудата не возвращается в сосудистое русло, а остается в межклеточном пространстве. Этот механизм играет роль в развитии сердечных отеков, а также при тромбозе, у беременных. При левожелудочковой недостаточности возникает застой крови в малом круге кровообращения, развивается отек легких.

Нарушение лимфообращения

Часть межклеточной жидкости поступает в лимфатическую систему ("систему сброса"). Нарушение лимфооттока при закупорке лимфатических сосудов филяриями вызывает возрастание давления в лимфатической системе и приводит к развитию отека. Этот механизм играет роль в развитии слоновости. Нарушение лимфооттока возникает при повышении давления в верхней полой вене при сердечной недостаточности.

Осмотический фактор

Развитие отека при участии этого фактора обусловлено увеличением содержания ионов натрия в организме вследствие вторичного гиперальдостеронизма, введении гипертонических растворов. Этот механизм играет роль в возникновении почечных (нефритических) отеков.

Онкотический фактор

В крови онкотическое давление равно 22 мм рт.ст. Если оно снижается, то сила реабсорбции уменьшается. При гипопротеинемии вода задерживается в межклеточном пространстве. Этот механизм играет роль в развитии нефротических и кахектических (голодных) отеков.

Проницаемость сосудистой стенки

Повышение проницаемости сосудистой стенки возникает при избыточном освобождении биологических активных веществ (гистамина, брадикинина). Этот механизм является пусковым в развитии воспалительных и аллергических отеков. При воздействии токсических веществ повышается проницаемость сосудистой стенки и развиваются токсические отеки.

 

 

Гидрофильность коллоидов

Коллоиды способны связывать воду при ацидозе, микседеме. Этот механизм играет роль в развитии эндокринных отеков.

Противодавление тканей

Развитие отека происходит при уменьшении противодавления тканей. Низким противодавлением обладают ткани легких, головной мозг (при открытой черепно-мозговой травме), подкожно-жировая клетчатка. Именно в этих тканях развиваются отеки.

Распространение отеков ведет к развитию отечной болезни.

 

Отрицательный водный баланс

Дегидратация, обезвоживание, гипогидратация.

Основные формы:

1. Гиперосмолярная гипогидратация

2. Изоосмолярная гипогидратация

3. Гипоосмолярная гипогидратация

Гиперосмолярная гипоргидратация

Гиперосмолярная гипогидратация возникает при ограничении поступления воды в организм или избыточной ее потери. В этом случае происходит накопление солей в межклеточном пространстве

Гиперосмолярная гипогидратация наблюдается при диабетическом эксикозе (несахарном диабете). Возникновение несахарного диабета связано с дефицитом АДГ. С мочой выводится большое количество воды низкой плотности. Дефицит АДГ возникает при патологии ЦНС, когда нарушается выработка гормона в супраоптическом ядре гипоталамуса.

Основные причины: опухоли, нейроинфекции, черепно-мозговая травма. Это - центральный механизм. Периферический механизм связан с пониженной реактивностью рецепторов почечного эпителия к АДГ. Потеря воды и задержка солей в межклеточном пространстве способствует выходу воды из клеток. Клетки обезвоживаются, развивается внутриклеточная дегидратация. Клетки уменьшаются в объеме их функция нарушается.

Изоосмолярная гипогидратация

Основные причины: 1) потеря жидкости через желудок (гастрический эксикоз), 2) потеря жидкости через кишечник (энтеральный эксикоз), 3) потеря жидкости при потоотделении.

Гастрический эксикоз возникает при рвоте. Происходит потеря воды и солей. Уменьшается содержание межклеточной и внутриклеточной жидкости.

Энтеральный эксикоз связан с потерей воды и натрия через кишечник (при холере, дизентерии). В норме в просвет кишечника поступает до 8 литров жидкости., но она реабсорбируется. При энтеральном эксикозе процессы реабсорбции нарушаются, усиливается моторика кишечника, что вызывает потерю воды и солей.

Потоотделение: человек может терять воду с солями до 1,5 литров в час. Это наблюдается при перегревании, в странах с жарким климатом.

Гипоосмолярная гипогидратация

При этой форме гипогидратации наблюдается потеря ионов натрия. Остающаяся в организме жидкость гипотонична. Причиной гипоосмолярной гипогидратации является минералокортикоидная недостаточность, возникающая при инфекционных процессах, интоксикации. Уменьшение натрия в межклеточной жидкости сопровождается относительным увеличением концентрации солей в клетке. Развивается внутриклеточная гипергидратация. Происходит набухание клеток, нарушение их функции и метаболизма. Может развиться водное отравление.

ПАТОФИЗИОЛОГИЯ БЕЛКОВОГО ОБМЕНА

Белки занимают ведущее место среди органических элементов. На их долю приходится более 50% сухой массы клетки. Они выполняют ряд важнейших биологических функций.

Основные функции белков

1. Белки входят в состав ферментов, обеспечивающих регуляцию всех видов обмена веществ.

2. Все двигательные функции организма обеспечиваются взаимодействием сократительных белков - актина и миозина.

3. Белки выполняют пластическую функцию: она заключается в восполнении и новообразовании различных структурных компонентов клетки и тканей

4. Энергетическая функция белков заключается в обеспечении организма энергией, образующейся при расщеплении белков.

5. Белки обусловливают онкотическое давление крови и межтканевой жидкости, участвуют в регуляции водного обмена.

6. Белки входят в состав гормонов и нуклеиновых кислот.

7. Белки выполняют транспортную роль: обеспечивают перенос гормонов, липидов, лекарственных веществ.

Основные этапы нарушения

1. Нарушение переваривания

2. Нарушение всасывания

3. Нарушение промежуточного обмена

4. Нарушение конечного этапа обмена белков

Нарушение переваривания

Переваривание белков начинается в желудке под влиянием фермента пепсина. Большое влияние на его активность оказывает соляная кислота. Выработке соляной кислоты способствуют дигестивные гормоны - гастрин и секретин. При хроническом гастрите, раке желудка выработка этих гормонов снижается. Уменьшается секреция соляной кислоты, активность пепсина снижается. Окончательное переваривание белков завершается в верхнем отделе тонкого кишечника под действием ферментов поджелудочной железы и клеток кишечника. В поджелудочной железе вырабатываются пепсин, химотрипсин, карбоксипептидаза, эластаза. Выработка панкреатического сока и ферментов контролируется секретином и панкреозимином. Нарушение выработки ферментов может быть обусловлено воспалительными процессами в поджелудочной железе, при интоксикациях, при инфекционных процессах, раке поджелудочной железы. Под влиянием ферментов поджелудочного сока полипептиды расщепляются до дипептидов.

Последний этап переваривания белков (мембранное пищеварение) происходит при участии ферментов, синтезируемых клетками кишечника - аминопептидаз и дипептидаз. Эти ферменты расщепляют дипептиды до аминокислот. Нарушения мембранного пищеварения наблюдаются при энтеритах.

Проявлениями нарушения переваривания белков является развитие гнилостной диспепсии, метеоризм, боль.

Нарушение всасывания

Всасывание аминокислот осуществляется по механизму активного переноса аминокислот в кровь, по механизму осмотической диффузии. В этом случае играет роль специфический переносчик. Его активность зависит от энергии АТФ, К+ -Na+ -АТФазы и ионов натрия. При гипоксии снижается выработка энергии и аминокислоты из кишечника в меньшей степени, чем в норме, поступают в кровь. Ограничение всасывания аминокислот наблюдается также при хронических воспалительных процессах в кишечнике, инфекционных заболеваниях, опухолях.

При снижении всасывания аминокислот развивается белковое голодание.

В ряде случаев, например, при остром воспалении повышается проницаемость кишечной стенки и может наблюдаться усиление всасывания не только аминокислот, но и полипептидов. В этом случае возможно развитие аллергических реакций. В кровеносное русло могут попадать аммиак, продукты гниения белков (индол, скатол): развивается интоксикация.

Нарушение промежуточного обмена белков.



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-07-01 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: