Периодичнсть осадконакопления.




В разрезе осадочной оболочки Земли имеет место неоднократная повторяемость слоёв пород или даже целых комплексов, близких по составу и внешнему виду. Повторяемость слоёв и осадочных комплексов (пачек, толщ, формаций) в истории Земли происходит на фоне общего поступательного развития планеты и называется периодичностью осадконакопления. Периодичность имеет различные масштабы. Чередуются тонкие (сантиметры и их доли) литологически однородные слойки, пласты и литологические комплексы (толщи в десятки метров), состоящие из целого набора пород, залегающих в определенной последовательности.

Разномасштабность явления послужила основанием для выделения периодичности низшего и высшего порядков. К периодичности низшего порядка относят чередование элементарных слойков или слоёв, имеющих толщину от долей до десятков сантиметров. Периодичность высшего порядка составляют комплексы (толщи, формации) толщиной в десятки и сотни метров. Обычно периодичность низшего порядка называют ритмичностью, а периодичность высшего порядка называют цикличностью,одноко единства в терминологии нет.

Среди причин, вызывающих ритмичность, прежде всего следует назвать сезонные, годичные и многолетние изменения климата, связанные с циклами солнечной активности: 11, 22, 35, 105, 150 лет и более. На периодичность низших порядков влияют также изменения климата, связанные с периодичностью изменения ориентировки земной оси, колебанием угла наклона земной оси в плоскости её орбиты, изменением формы последней.

Первопричиной периодичности высшего порядка считают возмущающее влияние центральных масс Галактики на Солнечную систему. Происходящие в результате этого ихменения формы орбиты, скорости движения, активности физичесикх процессов на Солнце, влияют на параметры движения, тектоническую актикность и климат Земли. Последние в свою очередь вызывают изменение условий седиментогенеза и состава откладывающего осадка.

 

 

В изученном разрезы можно выделить четыре цикла.

Первый цикл.

Цикл начинается глинисто-карбонатной пачкой, что говорит о морских условиях осадконакопления. Море, вероятно, было нормальной солёности, тёплым, с имеющейся не по-далёку областью сноса террегенного материала (о чём говорит наличие нерастворимой части). Постепенно солёнсть воды увеличивалась и климат станвился более жарким, аридным (условие накопления ангидритов, солей), что привело к накоплению сульфатно-карбонатной пачки.

Второй цикл.

Цикл начинается с накопления известняковой пачки. Т.е. солёность воды в море нормализовалась, что и способствовало накоплению карбонатов. Дальнейшее увеличение привноса террегенного материала привелок накоплению глинистой пачки. Вероятно, толща откладывалася в спокойной обстановке.

Третий цикл.

Происходит постепенное уменьшение привноса террегенного материала, что способствовало накоплению в морской среде нормальной солённости известняковой толщи. Далее, вероятно, солёность воды постепенно увеличивалась, что привело к накоплению глинисто-доломитовой пачки.

Четвёртый цикл.

Опять нармализуется солёность морского бассейна в начале цикла, что выражается в накоплении известняковой пачки. Далее происходит постепенное увеличение привноса террегенного материала и образование глинистой пачки. Резкое накопление ангидрита вызвано наступлением жаркого засушливого климата при малом выподении атмосферных осадков при условии, что испарение воды компенсировалось притоком морских вод.Далее происходит уменьшение солёности воды и накапливаются толщи мергелей.

Таким образом, изучая особенности каждого цикла в разрезе можно выделить идеальный цикл, котороый характеризуется следующей последовательностью пород: глина, известняк, доломит, ангидрит. В разрезе скважины этот идеальный цикл притерпевает изменения, связанные с резким изменением условий осадконакопления. Так, при идеальом цикле должно происходить постепенное увеличение солёности воды и постепенном переходу от известняка через доломит к ангидриту. В разрезе, как мы видим это не всегда происходит.

 

Коллекторские свойства.

Породы, содержащие жидкие или газообразные флюиды и отдающие их при разработке, называются коллекторами. Основные признаки, характеризующие качество пород-коллекторов, - пористость, проницаемость, плотность и насыщенность пор флюидами. По изученном разрезе № 3 скважины Акбельская отсутствуют данные о степени уплотнения и нефте-газо-водонасыщенности пород, поэтому я хочу подробнее остановиться на тех коллекторских свойствах, данные о которых имеются.

Совокупность всех пор независимо от их формы, размера, связи друг с другом и генезиса называется пористостью. Численно пористость выражается через коэффициент пористости, который представляет собой отношение суммарного объёма пор к объёму породы, в которой они находятся, и выражается в долях единицы или процентах.

 

Кпор=Vпор / Vпороды *100 %

 

Различают три вида пористости: полную, открытую и эффективную.

Полная пористость – это совокупность всех видов пор, независимо от их размера, формы, сообщаемости и генезиса.

Открытая пористость – это совокупность сообщающихся между собой пор.

Эффективная пористость – совокупность пор, через которые может осуществляться миграция данного флюида.

Пористость разных видов в одном образце не одинакова. Наиболее высокие значения характерны для полной пористости, далее – открытой и самые низкие – эффективной.

По генезису различают поры первичные, возникшие на стадии формирования горной породы (седиментогенез, диагенез), и вторичные, образовавшиеся в стадию бытия (катагенез, гипергенез). Первичные поры в карбонатных породах образуются вследствие неполного прилегания друг к другу оолитов или органогенных остатков, а также благодаря наличию полостей и камер в скелетных остатках различных породообразующих организмов (фораминифер, гастропод, кораллов и т.д.), слагающих известняки с низким содержанием глинистого и терригенного материала. Вторичную пористость представлябт трещины, каверны, межзерновые поры. Трещины образуются при литологических превращениях пород, а также в хрупких породах (плотных известняках, доломитах, аргиллитах, крепких песчанниках и др.) при разрядке тектонических напряжений и вседствие естественного гидгоразрыва.

В изученном разрезе пористостью обладаю все породы. Но наибольшей пористостью обладают нижеперечисленные породы. Мергель глинистый (Кп = 12,3 %), глина известковистая (Кп = 14,7 %), мергель глинистый (Кп = 11,5 %), известняк (Кп = 15,6 %), известняк (Кп = 16,4 %), известняк глинистый (Кп = 12,3%), известняк (Кп = 14,9%), глина известковистая (Кп = 8,4 %), глина (Кп = 10,7%), известняк глинистый (Кп = 12,6 %), доломит известковистый (Кп = 13,1%).

Проницаемость -это способность горной породы пропускать сквозь себя жидкость или газ. Величину проницаемости выражают через коэффициент пронициемости. Единицей проницаемости в СИ принят 1*10-12м2, который соответствует 0,981 Д (дарси) – внесистемной единице, применяемой в промышленности. Проницаемость 1*10-12м2 соответствует расходу жидкости (Q) 1 м3/с при фильтрации её через пористый образец горной породы длиной (L) 1м, площадью поперечного сечения (F) 1 м2 при вязкости жидкости (μ) 0,001 Па*с и перепаде давления (Δp) 0,1013 Мпа.

Согласнолинейному закону фильтрации Дарси, проницаемость породы выражается в следующем виде:

 

Кпр = Q* μ*L/Δp*F

Различают абсолютную, эффектиную и относительную проницаемость.

Абсолютная проницаемость - это проницаемость горной породы (или какого-либо другого пористого тела) применительно к однородному флюиду, не вступающему с ней во взаимодействие.

Эффективная проницаемость – это проницаемость горной породы или вообще пористого тела для данного жидкого (или газообразного) флюида при наличии в поровом пространстве газов (или жидкостей).

Относительная проницаемость – это отношение эффективной проницаемости к абсолютной, она вычисляется арифметически.

Вследствие анизотропии физических свойств горных пород и ориентированного расположения трещин проницаемость в пласте горных пород по разным направлениям может существенно различаться. Обычно в слоистых породах проницаемоть по наслоению выше, чем в направлении перпендикулярном к наслоению. В трещиноватой породе по направлению трещин проницаемость может быть очень высокой, а в перпендикулярных направлениях может практически осутствовать. Диапазон колебаний численных значениий абсолютной проницаемости очень велик от 5-10*10-11 м2 до 1*10-17 м2 и менее.

Проницаемость в разрезе скважины была изучена в двух направлениях – по напластованию и вкрест напластования. Численно эти значения практически одинаковы во всех породах (исключение составляет известняк глинистый, в котором Кпр по наслоению равен 8*10-15, а перпендикулярно наслоению Кпр равен 109*10-15). В разрезе проницаемостью обладают известняк – образец № 6 (Кпр = 832*10-15), известняк – образец № 7 (Кпр = 1003*10-15), доломит – образец № 9 (Кпр = 38*10-15), известняк глинистый – образец № 10 (Кпр =22 * 10-15), известняк – образец № 11 (Кпр = 109*10-15), известняк глинистый – образец № 16 (Кпр = 109*10-15), доломит известковистый – образец № 17 (Кпр = 138*10-15), доломит – образец № 18 (Кпр = 56*10-15).

Таким образом в изученном разрезе пористостью обладают все породы, а проницаемостью только некоторые. Причём проницаемость вдоль и поперёк наслоения практически одинакова, что говорит об однородном строении породы. По сочетанию рассмотренных коллекторских свойств можно выделить следующие пласты-коллекторы:

1. Пласт представлен известняком (образец № 6), в котором Кп = 15,6, а Кпр = 832*10-15. Коллектор, возможно, порового типа. Мощность пласта равна 16 м.

 

2. Пласт представлен известняком (образец № 7), в котором Кп=16,4, а Кпр = 1003*10-15. Коллектор, возможно, порового типа с внутриформенным видом порового пространства. Мощность пласта равна 31 м

 

3. Пласт представлен доломитом (образец № 9), в котором Кп = 5,8, а Кпр = 38-45*10-15. Коллектор, возможно, порового типа с межзеновым видом порового пространства. Мощность пласта равна 16 м.

 

4. Пласт представлен известняком глинистым (образец № 10), в котором Кп = 12,3, а Кпр = 17-22*10-15. Коллектор, возможно, смешанного типа. Мощность его составляет 24м.

 

 

5. Пласт представлен известняком (образец № 11), в котором Кп = 14,9, а Кпр = 109-123*10-15. Тип коллектора, скорее всего, смешанный. Мощность пласта равна 18 м.

 

6. Пласт представлен известняком глинистым (образец № 16), в котором Кп =19,3, а Кпр параллельно наслоению равен 8*10-15м2 и перпендикулярно наслоению равен 109*10-15м2. Коллектор, вероятно, трещиноватого типа. Мощность пласта равна 11 м.

7. Пласт представлен доломитом известковистым (образец № 17), в котором Кп = 13,1, а Кпр =138-196*10-15м2. Коллектор, вероятно смешанного типа. Мощность пласта составляет 14 м.

 

8. Пласт представлен доломитом (образец № 18), в котором Кп = 8,7, а Кпр = 56-94*10-15м2.. Коллектор, скорее всего, смешанного типа. Мощность пласта равна 13 м.



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: