Применение регенераторов в оптических системах




Лекция 9

 

Регенераторы и волоконно-оптические усилители

План:

1. Применение регенераторов в оптических системах;

2. Волоконно-оптические усилители;

3. Критические рабочие параметры усилителей типа EDFA;

4. Рамановские усилители.

 

ВОСП начали широко использоваться в 1980-х. Каждое волокно передавало один поток импульсов, представляющих двоичные 1 и 0. Модель такой системы в 1980-х могла бы включать источник света, подключенный к нему ВОК, детектор света, удаленный на какое-то расстояние. Максимальное расстояние между источником и детектором зависело от уровня выходной мощности лазерного источника, потерь в оптических разъемах, в сростках, в волокне, а также от скорости передачи и чувствительности детектора света, и нужно было увеличить длину линии связи, для этого устанавливали регенератор. Следуя этой методике, можно было бы обеспечить связь по всему континенту. Более того, емкость этой системы связи могла составлять сотни мегабит в секунду. Эта полная емкость могла бы передаваться по одному окну в одном направлении; для обеспечения полнодуплексной связи можно было бы использовать другое волокно, для передачи в противоположном направлении. При увеличении емкости в такой системе регенераторные секции становились короче и короче. Число активных элементов в схеме формирования системы заметно ухудшало доступность системы в целом. Кроме этого также возрастал уровень джиттера. Регенератор в то времябыл не более чем приемником света, выход которого замыкался непосредственно на вход передатчика.

 

Применение регенераторов в оптических системах

 

Регенератор принимает искаженный оптический сигнал на свой вход и пре­образует его в почти идеальную копию сигнала, похожую на ту, какая была передана предыдущим передатчиком. Этот регенерированный сигнал прак­тически свободен от искажений. Функция регенерации выполняется полно­стью цифровым передатчиком и приемником. Устройство, которое мы бу­дем рассматривать здесь - автономный регенератор. Оптические усилители не регенерируют цифровой оптический сигнал. На рисунке 9.1 показана блок-схема цифрового оптического регенератора.

Системные инженеры ВОСП используют методы расчета линии на основе бюджета мощности для определения местоположения регенератора. Это такая точка, где накопленные потери линии приводят к существенному ухудшению показателей системы.

Вернемся к рисунку 9.1 и проанализируем его слева направо. Вход регенерато­ра представляет собой оптический сигнал, искаженный и ослабленный за счет накопленной дисперсии и потерь в секции, которую он прошел. Опти­ческие импульсы, которые представляют двоичные 1, преобразуются в элект­рические 1, а битовые позиции, где такой импульс отсутствует или он очень мал, преобразуются в электрические двоичные 0. Этот электрический сигнал передается через электрическую схему приемника, где осуществляется вос­становление сигнала тактовой синхронизации. Окончательное решение о том, что существует в той или иной битовой позиции 1 или 0, определяется в процессе демодуляции оптического сигнала. В современных системах все эти функции выполняются в интегрированном PIN-приемнике.

Двоичный сигнал передается в блок терминирования транспортной функции SONET. Здесь получают доступ к транспортному заголовку SONET, что позволяет передать центру управления сетевых операций статус регенератора и качество битового потока.

Рисунок 9.1 – Упрощенная блок-схема цифрового оптического регенератора

 

Электрический сигнал блока терминирования транспортной функции SONET передается затем лазерному передатчику, который генерирует эквивалентные оптические импульсы, инициируемые потоком бит. Уровень оптической мощности лазерного передатчика, передаваемый в отходящее волокно, лежит в диапазоне от 0 до +3 дБм. Однако, если инженер-проектировщик ВОЛС хочет удлинить пролет/секцию (расстояние между соседними регенераторами, между регенератором и мультиплексором ввода-вывода или между регенератором и оптическим терминалом), он может разместить оптический усилитель на выходе регенератора, где сигнал может быть усилен на 20-25 дБ.

Регенератор имеет два преимущества, которых не имеет усилитель. Усилитель не регенерирует цифровой сигнал, тогда как регенератор делает это. Преимущество здесь состоит в том, что на вход усилителя подается сигнал, в котором аккумулированы все формы искажений. Этот же цифровой сигнал, содержащий те же самые плюс добавленные усилителем шумы и искажения, выходит из усилителя. В противоположность этому, регенератор устраняет большинство искажений и ухудшений цифрового сигнала и подает на выход прямоугольную последовательность двоичных импульсов. Второе преимущество регенератора состоит в том, что он имеет доступ к заголовку поля ОА&М (управления, эксплуатации и технического обслуживания) в SONET или SDH для обеспечения статуса регенератора и битового потока, проходящего через него. Этот статус сообщается в сетевой центр управления, ответственный за данную сеть. Это обеспечивает сетевому оператору прекрасную возможность для мониторинга и технического обслуживания. Усилитель же не имеет такого легкого доступа к битовому потоку, так как он не занимается демодуляцией-ремодуляцией двоичного потока, в отличие от регенератора.

Удаленные регенераторы питаются с помощью одного из следующих методов:

1. Они могут питаться от пары проводов, протянутой от основной систе­мы питания ближайшего мультиплексора или терминала.

2. Они могут использовать локальное питание от местной энергокомпа­нии. Они должны иметь источники бесперебойного питания или пи­таться локально от солнечных батарей, небольших газотурбинных уста­новок, ветроустановок с батарейными резервными источниками.

Удаленные ОУ должны получать питание аналогичным способом.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: