Лекция № 9 Физиология анализаторов




Анализатор – совокупность трех отделов нервной системы: периферического, проводникового и центрального.

Периферический отдел анализатора представлен рецепторами, воспринимающими внешние и внутренние раздражения.

Все рецепторы делятся на две группы: дистантные и контактные. Дистантные рецепторы способны воспринимать раздражения, источник которых находится на значительном расстоянии от организма (зрительные, слуховые, обонятельные рецепторы). Контактные рецепторы возбуждаются при непосредственном соприкосновении с источником раздражения. К ним относятся тактильные, температурные, вкусовые рецепторы.

Рецепторы трансформируют энергию раздражения в энергию нервного импульса. Причиной возникновения возбуждения в рецепторе является деполяризация его поверхностной мембраны в результате воздействия раздражителя. Эту деполяризацию называют рецепторным, или регенераторным, потенциалом.

Адаптация - приспособление к силе раздражителя. Происходит снижение чувствительности рецепторов к постоянно действующему раздражителю. Проприорецепторы не способны к адаптации.

Проводниковый отдел анализатора представлен нервными путями, проводящими нервные импульсы в центральный отдел анализатора.

Центральный, или мозговой, отдел анализатора — определенные области коры большого мозга. В клетках коры большого мозга нервные импульсы являются основой для возникновения ощущения. На базе ощущений возникают более сложные психические акты — восприятие, представление и абстрактное мышление.

Павлов И.П. Мозговой конец анализатора состоит из двух частей: ядра и периферических рассеянных нервных элементов, располагающихся по всей поверхности коры головного мозга.

Центральная часть анализатора (ядро) состоит из высокодифференцированных в функциональном отношении нейронов, которые осуществляют высший анализ и синтез информации, поступающей к ним. Рассеянные элементы мозгового конца анализатора представлены менее дифференцированными нейронами, способными к выполнению простейших функций.

Все анализаторы делятся на внешние и внутренние. К внешним анализаторам относят зрительный, слуховой, вкусовой, обонятельный и кожный. К внутренним анализаторам - двигательный, вестибулярный и анализатор внутренних органов (интерорецептивный анализатор).

 

Дистантные АНАЛИЗАТОРЫ.

Зрительный анализатор. Периферический отдел зрительного анализатора - фоторецепторы, расположенные на сетчатой оболочке глаза. Нервные импульсы по зрительному нерву (проводниковый отдел) поступают в затылочную область — мозговой отдел анализатора. В нейронах затылочной области коры большого мозга возникают многообразные и различные зрительные ощущения.

Глаз состоит из глазного яблока и вспомогательного аппарата. Стенку глазного яблока образуют три оболочки: роговица, склера, или белочная, и сосудистая. Внутренняя (сосудистая) оболочка состоит из сетчатки, на которой расположены фоторецепторы (палочки и колбочки), и ее кровеносных сосудов.

В состав глаза входят рецепторный аппарат, находящийся в сетчатке, и оптическая система. Оптическая система глаза представлена передней и задней поверхностью роговой оболочки, хрусталиком и стекловидным телом. Для ясного видения предмета необходимо, чтобы лучи от всех его точек падали на сетчатку. Приспособление глаза к ясному видению разноудаленных предметов называют аккомодацией. Аккомодация осуществляется путем изменения кривизны хрусталика. Рефракция – преломление света в оптических средах глаза.

Существуют две главные аномалии преломления лучей в глазу: дальнозоркость и близорукость.

Поле зрения — угловое пространство, видимое глазом при фиксированном взгляде и неподвижной голове.

На сетчатке расположены фоторецепторы: палочки (с пигментом родопсин) и колбочки (с пигментом йодопсин). Колбочки обеспечивают дневное зрение и восприятие цвета, палочки – сумеречное, ночное зрение.

Человек обладает способностью различать большое количество цветов. Механизм цветовосприятия по общепринятой, но уже устаревшей трехкомпонентной теории заключается в том, что в зрительной системе имеются три датчика, чувствительных к трем основным цветам: красному, желтому и синему. Поэтому нормальное цветовосприятие называется трихромазией. При определенном смешении трех основных цветов возникает ощущение белого цвета. При нарушении работы одного или двух датчиков основных цветов правильного смешения цветов не наблюдается и возникают нарушения цветовосприятия.

Различают врожденную и приобретенную формы цветоаномалии. При врожденной цветоаномалии чаще наблюдается снижение чувствительности к синему цвету, а при приобретенной — к зеленому. Цветоаномалия Дальтона (дальтонизм) заключается в снижении чувствительности к оттенкам красного и зеленого цветов. Этим заболеванием страдают около 10 % мужчин и 0,5 % женщин.

Процесс восприятия цвета не ограничивается реакцией сетчатки, а существенно зависит от обработки полученных сигналов мозгом.

Слуховой анализатор.

Значение слухового анализатора состоит в восприятии и анализе звуковых волн. Периферический отдел слухового анализатора представлен спиральным (кортиевым) органом внутреннего уха. Слуховые рецепторы спирального органа воспринимают физическую энергию звуковых колебаний, которые поступают к ним от звукоулавливающего (наружное ухо) и звукопередающего аппарата (среднее ухо). Нервные импульсы, образующиеся в рецепторах спирального органа, через проводниковый путь (слуховой нерв) идут в височную область коры большого мозга — мозговой отдел анализатора. В мозговом отделе анализатора нервные импульсы преобразуются в слуховые ощущения.

Орган слуха включает наружное, среднее и внутреннее ухо.

Строение наружного уха. В состав наружного уха входят ушная раковина, наружный слуховой проход.

Наружное ухо от среднего отделяется барабанной перепонкой. С внутренней стороны барабанная перепонка соединена с рукояткой молоточка. Барабанная перепонка колеблется при всяком звуке соответственно длине его волны.

Строение среднего уха. В состав среднего уха входит система слуховых косточек — молоточек, наковальня, стремечко, слуховая (евстахиева) труба. Одна из косточек — молоточек — вплетена своей рукояткой в барабанную переронку, другая сторона молоточка сочленена с наковальней. Наковальня соединена со стремечком, которое прилегает к мембране окна преддверия (овального окна) внутренней стенки среднего уха.

Слуховые косточки участвуют в передаче колебаний барабанной перепонки, вызванных звуковыми волнами, окну преддверия, а затем эндолимфе улитки внутреннего уха.

Окно преддверия расположено на стенке, отделяющей среднее ухо от внутреннего. Там же имеется круглое окно. Колебания эндолимфы улитки, начавшиеся у овального окна, распостраняются по ходам улитки, не затухая, до круглого окна.

Строение внутреннего уха. В состав внутреннего уха (лабиринта) входят преддверие, полукружные каналы и улитка, в которой расположены особые рецепторы, реагирующие на звуковые волны. Преддверие и полукружные каналы к органу слуха не относятся. Они представляют собой вестибулярный аппарат, который участвует в регуляции положения тела в пространстве и сохранении равновесия.

На основной мембране среднего хода улитки имеется звуковоспринимающий аппарат — спиральный орган. В его состав входят рецепторные волосковые клетки, колебания которых преобразуются в нервные импульсы, распространяющиеся по волокнам слухового нерва и поступают в височную долю коры большого мозга. Нейроны височной доли коры большого мозга приходят в состояние возбуждения, и возникает ощущение звука. Так осуществляется воздушная проводимость звука.

При воздушной проводимости звука человек способен воспринимать звуки в очень широком диапазоне — от 16 до 20 000 колебаний в 1 с.

Костная проводимость звука осуществляется через кости черепа. Звуковые колебания хорошо проводятся костями черепа, передаются сразу на перилимфу верхнего и нижнего ходов улитки внутреннего уха, а затем — на эндолимфу среднего хода. Происходит колебание основной мембраны с волосковыми клетками, в результате чего они возбуждаются, и возникшие нервные импульсы в дальнейшем передаются к нейронам головного мозга.

Воздушная проводимость звука выражена лучше, чем костная.

Вкусовой и обонятельный анализаторы.

Значение вкусового анализатора заключается в апробации пищи при непосредственном соприкосновении ее со слизистой оболочкой полости рта.

Вкусовые рецепторы (периферический отдел) заложены в эпителии слизистой оболочки ротовой полости. Нервные импульсы по проводниковому пути, главным образом блуждающему, лицевому и языкоглоточному нервам, поступают в мозговой конец анализатора, располагающегося в ближайшем соседстве с корковым отделом обонятельного анализатора.

Вкусовые почки (рецепторы) сосредоточены, в основном, на сосочках языка. Больше всего вкусовых рецепторов имеется на кончике, краях и в задней части языка. Рецепторы вкуса располагаются также на задней стенке глотки, мягком небе, миндалинах, надгортаннике.

Раздражение одних сосочков вызывает ощущение только сладкого вкуса, других — только горького и т. д. Вместе с тем имеются сосочки, возбуждение которых сопровождается двумя или тремя вкусовыми ощущениями.

Обонятельный анализатор принимает участие в определении запахов, связанных с появлением в окружающей среде пахучих веществ.

Периферический отдел анализатора образуется обонятельными рецепторами, которые находятся в слизистой оболочке полости носа. От обонятельных рецепторов нервные импульсы по проводниковому отделу — обонятельному нерву — поступают в мозговой отдел анализатора — область крючка и гиппокампа лимбической системы. В корковом отделе анализатора возникают различные обонятельные ощущения.

Рецепторы обоняния сосредоточены в области верхних носовых ходов. На поверхности обонятельных клеток имеются реснички. Это увеличивает возможность их контакта с молекулами пахучих веществ. Рецепторы обоняния очень чувствительны. Так, для получения ощущения запаха достаточно, чтобы было возбуждено 40 рецепторных клеток, причем на каждую из них должна действовать всего одна молекула пахучего вещества.

Ощущение запаха при одной и той же концентрации пахучего вещества в воздухе возникает лишь в первый момент его действия на обонятельные клетки. В дальнейшем ощущение запаха ослабевает. Количество слизи в полости носа также влияет на возбудимость обонятельных рецепторов. При повышенном выделении слизи, например во время насморка, происходит снижение чувствительности рецепторов обоняния к пахучим веществам.

Тактильный и температурный анализаторы.

Деятельность тактильного анализатора связана с различением различных воздействий, оказываемых на кожу — прикосновение, давление.

Тактильные рецепторы, находящиеся на поверхности кожи и слизистых оболочках полости рта и носа, образуют периферический отдел анализатора. Они возбуждаются при прикосновении к ним или давлении на них. Проводниковый отдел тактильного анализатора представлен чувствительными нервными волокнами, идущими от рецепторов в спинной (через задние корешки и задние столбы), продолговатый мозг, зрительные бугры и нейроны ретикулярной формации. Мозговой отдел анализатора- задняя центральная извилина. В нем возникают тактильные ощущения.

К тактильным рецепторам относят осязательные тельца (мейсснеровы), расположенные в сосудах кожи, и осязательные мениски (меркелевы диски), имеющиеся в большом количестве на кончиках пальцев и губ. К рецепторам давления относят пластинчатые тельца (Пачини), которые сосредоточены в глубоких слоях кожи, в сухожилиях, связках, брюшине, брыжейке кишечника.

Температурный анализатор. Его значение состоит в определении температуры внешней и внутренней среды организма.

Периферический отдел этого анализатора образован терморецепторами. Изменение температуры внутренней среды организма приводит к возбуждению температурных рецепторов, расположенных в гипоталамусе. Проводниковый отдел анализатора представлен спиноталамическим путем, волокна которого заканчиваются в ядрах зрительных бугров и нейронах ретикулярной формации ствола мозга. Мозговой конец анализатора — задняя центральная извилина КГМ, где формируются температурные ощущения.

Тепловые рецепторы представлены тельцами Руффини, холодовые — колбами Краузе.

Терморецепторы в коже располагаются на разной глубине: более поверхностно находятся холодовые, глубже — тепловые рецепторы.

ВНУТРЕННИЕ АНАЛИЗАТОРЫ.

Вестибулярный анализатор. Участвует в регуляции положения и движения тела в пространстве, в поддержании равновесия, а также имеет отношение к регуляции мышечного тонуса.

Периферический отдел анализатора представлен рецепторами, расположенными в вестибулярном аппарате. Они возбуждаются при изменении скорости вращательного движения, прямолинейном ускорении, изменении направления силы тяжести, вибрации. Проводниковый путь — вестибулярный нерв. Мозговой отдел анализатора расположен в передних отделах височной доли КГМ. В результате возбуждения нейронов этого отдела коры возникают ощущения, дающие представления о положении тела и отдельных его частей в пространстве, способствующие сохранению равновесия и поддержанию определенной позы тела в покое и при движении.

Вестибулярный аппарат состоит из преддверия и трех полукружных каналов внутреннего уха. Полукружные каналы — это узкие ходы правильной формы, которые располагаются в трех взаимно перпендикулярных плоскостях. Верхний, или передний, канал лежит во фронтальной, задний — в сагиттальной, а наружные — в горизонтальной плоскости. Один конец каждого канала колбообразно расширен и называется ампулой

Возбуждение рецепторных клеток происходит за счет перемещения эндолимфы каналов.

Повышение активности вестибулярного анализатора возникает под влиянием изменения скорости движения тела.

Двигательный анализатор. За счет активности двигательного анализатора определяется положение тела или его отдельных частей в пространстве, степень сокращения каждой мышцы.

Периферический отдел двигательного анализатора представлен проприорецепторами, находящимися в мышцах, сухожилиях, связках и околосуставных сумках. Проводниковый отдел состоит из соответствующих чувствительных нервов и проводящих путей спинного и головного мозга. Мозговой отдел анализатора располагается в двигательной области коры головного мозга — передней центральной извилине лобной доли.

Проприорецепторами являются: мышечные веретена, находящиеся среди мышечных волокон, луковицеобразные тельца (Гольджи), расположенные в сухожилиях, пластинчатые тельца, обнаруженные в фасциях, покрывающих мышцы, в сухожилиях, связках и надкостнице. Изменение активности различных проприорецепторов происходит в момент сокращения или расслабления мышц. Мышечные веретена всегда находятся в состоянии некоторого возбуждения. Поэтому от мышечных веретен постоянно поступают нервные импульсы в центральную нервную систему, в спинной мозг. Это приводит к тому, что двигательные нервные клетки — мотонейроны спинного мозга находятся в состоянии тонуса и непрерывно посылают редкие нервные импульсы по эфферентным путям к мышечным волокнам, обеспечивая их умеренное сокращение — тонус.

Интероцептивный анализатор. Этот анализатор внутренних органов участвует в поддержании постоянства внутренней среды организма (гомеостаза).

Периферический отдел образован разнообразными интерорецепторами, диффузно расположенными во внутренних органах. Они называются висцерорецепторами.

Проводниковый отдел включает несколько различных по функциональному значению нервов, которые иннервируют внутренние органы, блуждающие, чревные и внутренностные тазовые. Мозговой отдел располагается в моторной и премоторной области КГМ. В отличие от внешних анализаторов мозговой отдел интероцептивного анализатора имеет значительно меньше афферентных нейронов, воспринимающих нервные импульсы от рецепторов. Поэтому здоровый человек не ощущает работу внутренних органов. Это связано с тем, что афферентные импульсы, поступающие от интерорецепторов в мозговой отдел анализатора, не преобразуются в ощущения, то есть не доходят до порога нашего сознания. Однако при возбуждении некоторых висцерорецепторов, например рецепторов мочевого пузыря и прямой кишки в случае растяжения их стенок, возникают ощущения позыва на мочеиспускание и дефекацию.

Висцерорецепторы участвуют в регуляции работы внутренних органов, осуществляют рефлекторные взаимодействия между ними.

Боль - физиологический феномен, информирующий нас о вредных воздействиях, повреждающих или представляющих потенциальную опасность для организма. Болевые раздражения могут возникать в коже, глубоких тканях и внутренних органах. Эти раздражения воспринимаются ноцицепторами, расположенными по всему телу, за исключением головного мозга. Термин ноцицепция означает процесс восприятия повреждения.

Когда при раздражении кожных ноцицепторов, ноцицепторов глубоких тканей или внутренних органов тела, возникающие импульсы, следуя по классическим анатомическим путям, достигают высших отделов нервной системы и отображаются сознанием, формируется ощущение боли. Комплекс ноцицептивной системы в равной степени сбалансирован в организме комплексом антиноцицептивной системы, обеспечивающей контроль за активностью структур, участвующих в восприятии, проведении и анализе болевых сигналов. Антиноцицептивная система обеспечивает снижение болевых ощущений внутри организма. В настоящее время установлено, что болевые сигналы, поступающие с периферии, стимулируют активность различных отделов центральной нервной системы (околопроводное серое вещество, ядра шва ствола мозга, ядра ретикулярной формации, ядра таламуса, внутренней капсулы, мозжечка, интернейроны задних рогов спинного мозга и др.) оказывающих нисходящее тормозное действие на передачу ноцицептивной афферентации в дорзальных рогах спинного мозга.

В механизмах развития анальгезии наибольшее значение придаётся серотонинергической, норадренергической, ГАМКергической и опиоидергической системам мозга. Основная из них, опиоидергическая система, образована нейронами, тело и отростки которых содержат опиоидные пептиды (бета-эндорфин, мет-энкефалин, лей-энкефалин, динорфин). Связываясь с определёнными группами специфических опиоидных рецепторов, 90% которых расположено в дорзальных рогах спинного мозга, они способствуют высвобождению различных химических веществ (гамма-аминомасляная кислота), тормозящих передачу болевых импульсов. Эта природная, естественная болеутоляющая система так же важна для нормальной жизнедеятельности, как и болесигнализирующая система. Благодаря ей, незначительные повреждения типа ушиба пальца или растяжения связок вызывают сильные болевые ощущения только на короткое время - от несколько минут до нескольких часов, не заставляя нас страдать в течение дней и недель, что случилось бы в условиях сохранения боли до полного заживления.

Лекция № 10 Физиология высшей нервной деятельности

Высшая нервная деятельность осуществляется за счет двух механизмов: инстинктов и условных рефлексов.

Инстинкты — это сложнейшие врожденные цепные безусловные рефлекторные реакции, которые проявляются главным образом за счет активности подкорковых ядер (бледное ядро и полосатое тело) и ядер промежуточного мозга (зрительные бугры и гипоталамус). Инстинкты одинаковы у животных одного вида, передаются по наследству и связаны с жизненно необходимыми функциями организма — питанием, защитой, размножением.

Условные рефлексы — это индивидуальные, приобретенные рефлекторные реакции, которые вырабатываются на базе безусловных рефлексов. Они осуществляются главным образом за счет деятельности КГМ.

И. П. Павлов разделил условные рефлексы на натуральные и искусственные.

Натуральные условные рефлексы образуются на естественные качества (свойства) безусловных раздражителей. Например, формирование условного пищевого рефлекса на запах, вид пищи.

Искусственные условные рефлексы образуются на самые разнообразные искусственные раздражители для данного безусловного рефлекса (свет, звук, запах, изменение температуры и т. д.). Условным сигналом может стать любое изменение внешней среды или внутреннего состояния организма.

Торможение условных рефлексов. Условные рефлексы не только вырабатываются, но и исчезают при определенных условиях. И. П. Павлов различал два вида торможения условных рефлексов: безусловное и условное.

Безусловное торможение является врожденным, оно может проявляться в любом отделе ЦНС. Безусловное торможение может быть внешним и запредельным. Внешнее торможение возникает под влиянием нового раздражителя, который действует одновременно с условным сигналом. Внешний раздражитель должен быть более сильным — доминантным. Например, болевое раздражение кожи у собаки может резко затормозить пищевые условные рефлексы. Положительное значение внешнего торможения состоит в том, что организм переключается на новый, более важный в данный момент, вид рефлекторной деятельности.

Запредельное торможение возникает при значительном увеличении силы или продолжительности действия условного сигнала. При этом условный рефлекс резко ослабевает или полностью исчезает. Например, у собаки был выработан слюноотделительный условный рефлекс на звонок. Если постепенно увеличивать силу условного сигнала (звонка), то вначале количество отделяемой слюны увеличивается. При дальнейшем нарастании силы условного сигнала отделение слюны уменьшается и, наконец, полностью тормозится.

По своей природе запредельное торможение является пессимальным. Оно выполняет охранительную функцию, препятствуя истощению нервных клеток.

Запредельное торможение легче развивается при снижении лабильности, работоспособности нейронов коры большого мозга, например, после тяжелого инфекционного заболевания, у пожилых людей и т. д.

Условное (внутреннее) торможение свойственно только клеткам КГМ. Это торможение, как и условные рефлексы, вырабатывается. Основным условием для проявления внутреннего торможения является неподкрепление условного раздражителя безусловным. Например, если у собаки выработан прочный слюноотделительный условный рефлекс на свет, а затем условный сигнал (свет) применять много раз изолированно без подкрепления (без дачи пищи), то выделение слюны постепенно уменьшается и, наконец, прекратится. Условный рефлекс угас — угасательное торможение. Подкрепление условного сигнала безусловным раздражителем восстанавливает условный рефлекс. Однако даже при отсутствии подкрепления условный рефлекс может вновь проявиться после отдыха, при наличии положительных эмоций. Это явление получило название растормаживания условных рефлексов. Быстрее и легче угасают непрочные недавно выработанные условные рефлексы. За счет угасательного торможения организм освобождается от ненужных, потерявших сигнальное значение условных рефлексов.

Значение торможения условных рефлексов. За счет торможения условных рефлексов достигается точное и совершенное приспособление организма к условиям существования, уравновешивание организма с окружающей средой, осуществляется аналитическая и синтетическая деятельность головного мозга.

Значение условных рефлексов. Условные рефлексы имеют сигнальное (приспособительное) значение для организма. Они предупреждают человека или животное об опасности, дают знать о близости пищи и т. д. В борьбе за существование выживает то животное, у которого быстрее и легче формируются условные рефлексы.

И. П. Павлов, характеризуя значение условных рефлексов, подчеркивал, что условные рефлексы уточняют, утончают и усложняют отношения организма с внешней средой. Цепи сложнейших условных рефлексов лежат в основе формирования дисциплины, процессов воспитания и обучения.

Системность в работе коры больших полушарий.

Приспособление организма к сложной системе разнообразных раздражителей осуществляется при помощи условнорефлекторной деятельности КГМ. Одним из проявлений этой деятельности является образование динамического стереотипа.

Динамический стереотип — выработанная и зафиксированная в коре большого мозга человека или животного устойчивая последовательность условных рефлексов, вырабатываемая в результате многократного воздействия следующих в определенном порядке условных сигналов.

Для того чтобы образовался динамический стереотип, на организм должен действовать комплекс раздражителей в определенном порядке и через определенные промежутки времени (внешний стереотип). Так, например, у собаки вырабатывают условный слюноотделительный рефлекс на комплекс, состоящий из трех раздражителей: звонок, свет и механическое раздражение кожи. Если изменить порядок действия раздражителей или интервал между ними, даже на 15 с, происходит нарушение работы клеток коры большого мозга: условный рефлекс угасает или полностью исчезает, тормозится.

При выработке динамического стереотипа в центральной нервной системе происходит соответствующее распределение процессов возбуждения и торможения. В результате этого у человека или животного возникает связанная цепь условных и безусловных рефлексов (внутренний динамический стереотип). Динамическим стереотип называется потому, что он может быть разрушен и вновь образован при изменении условий существования. Его перестройка иногда происходит с большим трудом и может вызвать развитие невроза (нарушений функций высшей нервной деятельности). С большим трудом ломка динамического стереотипа и образование нового происходит у пожилых людей, у которых нервные процессы малоподвижны и ослаблены.

Перестройка динамического стереотипа наблюдается в жизни каждого человека в различные возрастные периоды в связи с изменениями условий жизни: поступление ребенка в школу, смена школы на специальное учебное заведение, переход на самостоятельную работу и т. д. Большая роль в облегчении перестройки динамического стереотипа у человека принадлежит общественному укладу жизни, а также своевременной помощи родителей, воспитателей, учителей.

При наличии динамического стереотипа условные рефлексы протекают легче и автоматичнее. Динамический стереотип лежит в основе выработки различных привычек, навыков, автоматических процессов в трудовой деятельности. Вследствие этого опытный рабочий выполняет привычную для него работу быстрее и с меньшим утомлением, чем начинающий. Динамический стереотип определяет характер поведения животных и человека в окружающей среде.

Взаимоотношения процессов возбуждения и торможения в КГМ.

Сложнейшие взаимоотношения между организмом и разнообразными условиями жизни достигаются благодаря тончайшим взаимодействиям основных нервных процессов — возбуждения и торможения — в центральной нервной системе и, особенно, в нейронах коры большого мозга.

 

Только одно возбуждение не может обеспечить нормальную деятельность организма. Ничем не сдерживаемое возбуждение (отсутствие торможения) постепенно приведет к истощению нервной системы и гибели организма. Если бы в нервной системе постоянно существовал только процесс торможения, то организм оказался бы нежизнедеятельным, неспособным реагировать на все сигналы, поступающие из внешней и внутренней среды.

Нервные процессы подчиняются определенным закономерностям: иррадиации, концентрации и индукции. Нервные процессы обладают способностью распространяться (иррадиировать), а затем собираться (концентрироваться) в том участке центральной нервной системы, где они возникли.

Процессы возбуждения и торможения связаны между собой по принципу индукции (наведение). Различают взаимную и последовательную индукцию.

Взаимная индукция. При возникновении очага возбуждения или торможения в центральной нервной системе по его периферии происходит изменение функциональных свойств нервных клеток. Вокруг участка возбуждения снижается возбудимость и лабильность нейронов и в этих клетках легко развивается процесс торможения (очаг возбуждения индуцирует зону торможения). Это явление получило название отрицательной взаимной индукции. Примером такого состояния нервных процессов могут служить взаимоотношения между центрами глотания и дыхания. При возбуждении центра глотания деятельность дыхательного центра тормозится и дыхание задерживается.

По периферии участка торможения активность нервных клеток повышается и в этих нейронах легко возникает процесс возбуждения (очаг торможения индуцирует зону возбуждения). Это явление получило название положительной взаимной индукции.

Последовательная индукция. Возбуждение, возникшее в нейронах, через некоторое время в этих же нервных клетках последовательно сменяется торможением и обратно, торможение переходит в возбуждение. Примером этого вида индукции может служить смена бодрствования и сна.

ОСОБЕННОСТИ ВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ ЧЕЛОВЕКА.

ПЕРВАЯ И ВТОРАЯ СИГНАЛЬНЫЕ СИСТЕМЫ.

Различают первую и вторую сигнальные системы. Первая сигнальная система имеется у человека и животных. Деятельность этой системы проявляется в условных рефлексах, формирующихся на любые раздражения внешней среды (свет, звук, механическое раздражение и др.), за исключением слова. У человека, живущего в определенных социальных условиях, первая сигнальная система имеет социальную окраску.

Условные рефлексы первой сигнальной системы образуются в результате деятельности клеток коры большого мозга, кроме лобной области и области мозгового отдела речедвигательного анализатора. Первая сигнальная система у животных и человека обеспечивает предметное конкретное мышление.

Вторая сигнальная система, возникла и развилась в результате трудовой деятельности человека и появления речи. Труд и речь способствовали развитию рук, головного мозга и органов чувств.

Деятельность второй сигнальной системы проявляется в речевых условных рефлексах. Мы можем в данный момент не видеть какой-то предмет, но достаточно его словесного обозначения, чтобы мы ясно себе его представили. Вторая сигнальная система обеспечивает абстрактное мышление в виде понятий, суждений, умозаключений.

Речевые рефлексы второй сигнальной системы формируются благодаря активности нейронов лобных областей и области речедвигательного анализатора. Периферический отдел этого анализатора представлен рецепторами, которые расположены в словопроизносящих органах (рецепторы гортани, мягкого неба, языка и др.). От рецепторов импульсы поступают по соответствующим афферентным путям в мозговой отдел речедвигательного анализатора, представляющий собой сложную структуру, которая включает несколько зон коры головного мозга. Функция речедвигательного анализатора особенно тесно связана с деятельностью двигательного, зрительного и звукового анализаторов. Речевые рефлексы, как и обычные условные рефлексы, подчиняются одним и тем же законам. Однако слово отличается от раздражителей первой сигнальной системы тем, что оно является многообъемлющим. Вовремя сказанное доброе слово способствует хорошему настроению, повышает трудоспособность, но словом можно тяжело ранить человека. Особенно это относится к отношениям между больными людьми и медицинскими работниками. Неосторожно произнесенное слово в присутствии больного по поводу его заболевания может значительно ухудшить его состояние.

Животные и человек рождаются только с безусловными рефлексами. В процессе роста и развития происходит формирование условнорефлекторных связей первой сигнальной системы, единственной у животных. У человека в дальнейшем на базе первой сигнальной системы постепенно формируются связи второй сигнальной системы, когда ребенок начинает говорить и познавать окружающую действительность.

Вторая сигнальная система является высшим регулятором различных форм поведения человека в окружающей его природной и социальной среде.

Однако вторая сигнальная система правильно отражает внешний объективный мир только в том случае, если постоянно сохраняется ее согласованное взаимодействие с первой сигнальной системой.

ТИПЫВЫСШЕЙ НЕРВНОЙ ДЕЯТЕЛЬНОСТИ.

Под типом высшей нервной деятельности следует понимать совокупность свойств нервных процессов, обусловленных наследственными особенностями данного организма и приобретенных в процессе индивидуальной жизни.

В основу деления нервной системы на типы И. П. Павлов положил три свойства нервных процессов: силу, уравновешенность и подвижность (возбуждения и торможения).

Под силой нервных процессов понимают способность клеток коры большого мозга сохранять адекватные реакции на сильные и сверхсильные раздражители.

Под уравновешенностью следует понимать одинаковую выраженность по силе процессов возбуждения и торможения. Подвижность нервных процессов характеризует быстроту перехода процесса возбуждения в торможение и наоборот.

На основании изучения особенностей нервных процессов И. П. Павлов выделил следующие основные типы нервной системы: два крайних и один центральный тип. Крайними типами являются сильный неуравновешенный и слабый тормозной.

Сильный неуравновешенный тип. Характеризуется сильными неуравновешенными и подвижными нервными процессами. У таких животных процесс возбуждения преобладает над торможением, их поведение агрессивное (безудержный тип).

Слабый тормозной тип. Характеризуется слабыми неуравновешенными нервными процессами. У этих животных преобладает процесс торможения, они трусливы, попадая в незнакомую обстановку; поджимают хвост, забиваются в угол.

Центральному типу свойственны сильные и уравновешенные нервные процессы, но в зависимости от их подвижности его делят на две группы: сильный уравновешенный подвижный и сильный уравновешенный инертный типы.

Сильный уравновешенный подвижный тип. Нервные процессы у таких животных сильные, уравновешенные и подвижные. Возбуждение легко сменяется торможением и наоборот. Это ласковые, любознательные, всем интересующиеся животные (живой тип).

Сильный уравновешенный инертный тип. Этот тип животных отличается сильными уравновешенными, но малоподвижными нервными процессами (спокойный тип). Процессы возбуждения и особенно торможения сменяются медленно. Это инертные, малоподвижные животные. Между этими основными типами нервной системы имеются переходные, промежуточные типы.

Основные свойства нервных процессов наследуются. Совокупность всех генов, присущих данной особи, получили название генотипа. В процессе индивидуальной жизни под влиянием окружающей среды генотип претерпевает определенные изменения, в результате которого формируется фенотип — совокупность всех свойств и признаков особи на определенной стадии развития. Следовательно, поведение животных и человека в окружающей среде определяется не только наследуемыми свойствами нервной системы, но и влияниями внешней среды (воспитание, обучение и т. д.). При определении типов высшей нервной деятельности у человека надо учитывать взаимоотношения первой и второй сигнальной систем. Основываясь на этих положениях, И. П. Павлов выделил четыре основных типа, использовав для их обозначения терминологию Гиппократа: меланхолик, холерик, сангвиник, флегматик.

Холерик — сильный, неуравновешенный тип. Процессы торможения и возбуждения в коре большого мозга у таких людей характеризуются силой, подвижностью и неуравновешенностью, преобладает возбуждение. Это очень энергичные люди, но легковозбудимые и вспыл



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-03-24 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: