Схема решения уравнения методом хорд и касательных




Метод хорд (секущих).

Этот метод применяется при решении уравнений вида , если корень уравнения отделён, т.е. и выполняются условия:

1) (функция принимает значения разных знаков на концах отрезка );

2) производная сохраняет знак на отрезке (функция либо возрастает, либо убывает на отрезке ).

Первое приближение корня находится по формуле: .

Для следующего приближения из отрезков и выбирается тот, на концах которого функция имеет значения разных знаков.

Тогда второе приближение вычисляется по формуле:

, если или , если .

Вычисления продолжаются до тех пор, пока не перестанут изменяться те десятичные знаки, которые нужно оставить в ответе.

Метод касательных (Ньютона).

Этот метод применяется, если уравнение имеет корень , и выполняются условия:

1) (функция принимает значения разных знаков на концах отрезка );

2) производные и сохраняют знак на отрезке (т.е. функция либо возрастает, либо убывает на отрезке , сохраняя при этом направление выпуклости).

На отрезке выбирается такое число , при котором имеет тот же знак, что и , т. е. выполняется условие . Таким образом, выбирается точка с абсциссой , в которой касательная к кривой на отрезке пересекает ось . За точку сначала удобно выбирать один из концов отрезка.

Первое приближение корня определяется по формуле: .

Второе приближение корня определяется по формуле: .

Вычисления ведутся до совпадения десятичных знаков, которые необходимы в ответе, или при заданной точности - до выполнения неравенства .

Достоинства метода: простота, быстрота сходимости.

Недостатки метода: вычисление производной и трудность выбора начального положения.

Комбинированный метод хорд и касательных.

Если выполняются условия:

1) ,

2) и сохраняют знак на отрезке ,

то приближения корня уравнения по методу хорд и по методу касательных подходят к значению этого корня с противоположных сторон. Поэтому для быстроты нахождения корня удобно применять оба метода одновременно. Т.к. один метод даёт значение корня с недостатком, а другой – с избытком, то достаточно легко получить заданную степень точности корня.

Схема решения уравнения методом хорд и касательных

1. Вычислить значения функции и .

2. Проверить выполнение условия . Если условие не выполняется, то неправильно выбран отрезок .

3. Найти производные и .

4. Проверить постоянство знака производных на отрезке . Если нет постоянства знака, то неверно выбран отрезок .

5. Для метода касательных выбирается за тот из концов отрезка , в котором выполняется условие , т.е. и одного знака.

6. Приближения корней находятся:

а) по методу касательных: ,

б) по методу хорд: .

7. Вычисляется первое приближение корня: .

8. Проверяется выполнение условия: , где - заданная точность.

Если условие не выполняется, то нужно продолжить применение метода по схеме 1-8.

В этом случае отрезок изоляции корня сужается и имеет вид . Приближённые значения корня находятся по формулам:

и .

Вычисления продолжаются до тех пор, пока не будет найдено такое значение , при котором и совпадут с точностью .

Пример. Решить уравнение методом хорд и касательных с точностью 0,001, если известно, что корень уравнения .

Решение.

1. Вычислим значения функции на концах отрезка: , .

2. Проверим выполнение условия: - условие выполняется.

3. Найдём производные: и .

4. На отрезке производные и , т.е. сохраняют знак, следовательно, условие выполняется.

5. Выберем значение для метода касательных. Т.к. и , то .

6. Найдём приближения корня:

а) по методу касательных:

б) по методу хорд: .

7. Найдём первое приближение корня: .

8. Проверим выполнение условия: - условие не выполняется, значит нужно продолжить вычисления.

9. Отрезок изоляции корня имеет вид: .

10. Продолжим уточнение корня по схеме. Для этого найдём значения функции на концах суженного отрезка:

, .

11. Проверим условие: - выполняется, значит можно продолжить применение метода.

12. Так как и на отрезке , то для метода касательных: .

13. Вычислим значение производной: .

14. Найдём новые значения концов отрезка изоляции:

, .

15. Найдём второе приближение корня: .

16. Проверим выполнение условия: - неравенство неверное, значит необходимо продолжить вычисления.

17. Отрезок изоляции корня имеет вид: .

18. Вычислим значения функции:

, .

19. Условие - выполняется.

20. Так как и на , то для метода касательных .

21. Вычислим производную: .

22. Вычислим: ,

.

23. Найдём третье приближение корня: .

24. Проверим выполнение неравенства: - условие выполняется, значит, цель достигнута.

25. Следовательно, или - приближённое значение корня с точностью до 0,001.

Ответ: .



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: