Теория телескопической системы.




Введение.

 

Основой любого оптического прибора является оптическая система, которая

представляет собой совокупность оптических деталей (линз, призм, зеркал).

Оптические приборы в значительной степени определяют научно-технический прогресс во всех областях нашей деятельности. Их используют для исследования природных ресурсов, в экологии, медицине и генной инженерии, в металлургии, в машино- и приборостроении, кинематографии, телевидение и связи, космонавтике и астрономии, ядерной энергетики и в других отраслях.

 

Цель данного курсового проекта – рассчитать зрительную трубу Кеплера по ее заданным основным параметрам.

 

При анализе исходных данных, мной было установлено, что эта система будет создавать перевернутое изображение, так как ее видимое увеличение отрицательное. Применять прибор, основанный на этой системе следует в условиях слабого освещения, так как выходной зрачок системы соизмерим с диаметром зрачка глаза в аналогичных условия освещенности.

 

 

Теория телескопической системы.

Астрономические оптические приборы, предназначенные для наблюдения небесных тел. Телескоп – это оптическая система, которая, «выхватывая» из пространства небольшую область, зрительно приближая расположенные в ней объекты. Телескоп улавливает параллельные своей оптической оси лучи светового потока, собирает их в одну точку (фокус) и увеличивает при помощи линзы или, чаще, системы линз (окуляра), которая одновременно снова преобразует расходящиеся лучи света в параллельные. Телескопы используются с применением различных приемников излучения для визуальных, фотографических, спектральных, фотоэлектрических наблюдений небесных светил.

 

Визуальные телескопы имеют объектив и окуляр и представляют собой так называемую телескопическую оптическую систему: они преобразуют параллельный пучок лучей, входящих в объектив, в параллельный же пучок, выходящий из окуляра. В такой системе задний фокус объектива совпадает с передним фокусом окуляра.

 

 

Основные оптические характеристики устройства телескопической системы: видимое увеличение Г, угловое поле зрения 2W, диаметр выходного зрачка D, разрешающая способность и проницающая сила.

 

Видимое увеличение оптической системы — это отношение угла, под которым наблюдается изображение, даваемое оптической системой прибора, к угловому размеру объекта при наблюдении его непосредственно глазом.

Видимое увеличение телескопической системы:

Г=f’об/f’ок=D/D’,

где f’об и f’ок — фокусные расстояния объектива и окуляра, D - диаметр входного, а D’ - выходного зрачка.

Таким образом, увеличивая фокусное расстояние объектива или уменьшая фокусное расстояние окуляра, можно достичь больших увеличений. Однако чем больше увеличение телескопа, тем меньше его поле зрения и тем больше искажения изображений объектов из-за несовершенства оптики системы.

 

Выходной зрачок представляет собой наименьшее сечение светового пучка, выходящего из телескопа. При наблюдениях зрачок глаза совмещается с выходным зрачком системы; поэтому он не должен быть больше зрачка глаза наблюдателя. Иначе часть света, собранного объективом, не попадет в глаз и будет потеряна.

 

Обычно диаметр входного зрачка (оправа объектива) гораздо больше зрачка глаза, и точечные источники света, в частности звезды, при наблюдении их через телескоп кажутся значительно более яркими. Их кажущаяся яркость пропорциональна квадрату диаметра входного зрачка телескопа. Слабые звезды, не видимые невооруженным глазом, могут быть хорошо видны в телескоп с большим диаметром входного зрачка. Количество звезд, видимых в телескоп, гораздо больше, чем наблюдаемое непосредственно глазом.

 

Для астрономических объективов разрешающая способность определяется наименьшим угловым расстоянием между двумя звездами, которые в телескоп могут быть видны раздельно. Теоретически разрешающая способность визуального телескопа (в секундах дуги) для желто-зеленых лучей, к которым наиболее чувствителен глаз, может быть оценена по формуле:

ψ=120/D,

где D — диаметр входного зрачка телескопа, выраженный в миллиметрах.

 

Проницающей силой телескопа называется предельная звездная величина светила, доступного наблюдению с помощью данного телескопа при хороших атмосферных условиях. Плохое качество изображения, вследствие дрожания, поглощения и рассеивания лучей земной атмосферой, снижает предельную звездную величину реально наблюдаемых звезд, уменьшая концентрацию световой энергии на сетчатке глаза, фотопластинке или другом приемнике излучения в телескопе. Количество света, собираемого входным зрачком телескопа, растет пропорционально его площади; при этом возрастает и проницающая сила телескопа.

В зависимости от оптической системы телескопы разделяются на линзовые (рефракторы), зеркальные (рефлекторы) и зеркально-линзовые.

Если линзовая телескопическая система имеет положительный (собирающий) объектив и отрицательный (рассеивающий) окуляр, то она называется системой Галилея. Телескопическая линзовая система Кеплера имеет положительный объектив и положительный окуляр.

В схеме Кеплера объективом и окуляром является положительная оптическая система. Объектив создает перевернутое действительное изображение в своей задней фокальной плоскости, которое можно наблюдать с помощью окуляра.

Задняя фокальная плоскость объектива совпадает с передней фокальной плоскостью окуляра, так что падающий на объектив параллельный пучок лучей выходит из окуляра также параллельным.

 

 

 


Одним из недостатков схемы Кеплера является большая длина оптической системы (), причем чем больше увеличение, тем длиннее должна быть система Кеплера. Например, при фокусном расстоянии окуляра и увеличении , фокусное расстояние объектива , а общая длина системы .

 

Еще одним недостатком системы Кеплера является перевернутое изображение. Это не имеет особого значения для исследования небесных тел, но представляет неудобство для наблюдения земных объектов. Поэтому в биноклях и зрительных трубах приходится применять оборачивающие системы, которые обычно ставятся между объективом и окуляром. Оборачивающие системы могут быть линзовые или призменные. Линзовые оборачивающие системы еще больше увеличивают длину всей системы.

 


Применение линзовых оборачивающих систем.

 

Призменные оборачивающие системы состоят из стеклянных призм, действующих, как зеркала. Они сокращают длину всей системы, но при этом увеличивается масса прибора, к тому же возникают трудности технологического характера, связанные с изготовлением и юстировкой призм. Такие системы обычно используются в биноклях большого увеличения.

 

 

Призменная оборачивающая система.

 

Одним из главных достоинств системы Кеплера является наличие промежуточного изображения в фокусе объектива, куда можно поставить сетку (прозрачную пластинку со шкалой) и с ее помощью производить точные измерения углов и расстояний.

 

Оптические системы, построенные по схеме Кеплера, используются для телескопов, подзорных труб, дальномеров, морских биноклей большого увеличения (до ), а также для измерительных систем.

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: