Расчёт основных деталей двигателя




 

Расчет деталей с целью определения напряжений и деформаций, возникающий при работе двигателя, производится по формулам сопротивления материалов и деталей машин. До настоящего времени большинство из используемых расчетных выражений дают лишь приближенные значения напряжений.

Несоответствие расчетных и фактических данных объясняется различными причинами, основными из которых являются: отсутствие действительной картины распределения напряжений в материале рассчитываемой детали; использование приближенных расчетных схем действия сил и места их приложения; наличие трудно учитываемых знакопеременных нагрузок и невозможность определения их действительных значений; трудность определения условий работы многих деталей двигателя и их термических напряжений; влияние неподдающихся точному расчету упругих колебаний; невозможность точного определения влияния состояния поверхности, качества обработки (механической или термической), размеров детали и т.д. на величину возникающих напряжений.

В связи с этим применяемые методы расчета позволяют получить напряжения и деформации, являющиеся лишь условными величинами и характеризующие только сравнительную напряженность рассчитываемой детали.

 

5.1 Расчёт цилиндропоршневой группы

 

5.1.1 Расчёт поршня

На основании данных теплового расчёта скоростной характеристики получили что:

– Диаметр поршня D=100мм;

– Ход поршня S=86мм;

– Максимальное давление сгорания pz=7,57МПа, при nN=3310 об/мин и действительном давлении сгорания pzd=6,43МПа;

– Площадь поршня Fп=78,5см2;

– Наибольшая нормальная сила Nmax=2864 H, при φ=3900;

– Масса поршневой группы mn=1,18 кг;

– Обороты максимальной скорости, nxx=3975 об/мин, при λ=0,269.

В соответствии с существующими аналогичными двигателями и с учётом соотношений принимаем по таблице 51 [1]:

– Толщина днища поршня δ=9мм;

– Высота поршня Н=105мм;

– Высота юбки поршня hю=75мм;

– Радиальная толщина кольца t=4мм;

– Задиальный зазор кольца в канавке поршня: Δt=0,9мм;

– Толщина стенки головки поршня S=7мм;

– Толщина первой кольцевой перемычки hп=5мм;

– Число масляных каналов в поршне nм/=4 шт;

– Диаметр масляного канала dм=0,9 мм.

Материал поршня – высококремнистый аллюминивый сплав.

αп = 25.10-6 1/град. – коэффициент линейного расширения материала поршня.

Материал гильзы цилиндра – серый чугун.

 

αв = 11.10-6 1/град.

 

Напряжение изгиба в днище поршня:

 

σиз = Pzmax . (ri/δ)2 , (128)

где, ri = (D/2)-(S + t + Δt) = (100/2)-(7 + 4 + 0,9) = 38,1мм.

σиз = 7,57. (38,1/9)2 = 135,7 МПа.


Днище поршня должно быть усилено рёбрами жёсткости.

При наличии у днища рёбер жёсткости расчётное напряжение не превышает допустимого значения [σиз]=50÷150МПа.

Напряжение сжатия в сечении х-х:

 

σсжzmax/Fx-x МПа, (129)

 

где Рzmax = рz . Fп = 7,57 . 78,5 . 10-4 = 0,059 МН – максимальная сила давления газов на днище поршня.

 

Fx-x- площадь сечения х-х.

Fx-x = (π/4). (dr2-di2) - nм/. F/ мм2, (130)

 

где F/- площадь продольного диаметрального сечения масляного канала, мм.

 

F/ = ((dx-di) / 2) .dм (131)

 

где – диаметр поршня по дну канавок;

 

.

.

 

Напряжение разрыва в сечении Х-Х. Сила инерции возвратно-поступательного движущихся масс определяется для режима максимальной частоты вращения при холостом ходе двигателя.

– Максимальная угловая скорость холостого хода:

 

, (132)

рад/с.

 

– Масса головки поршня с кольцами, расположенными выше сечения х-х, определяется по геометрическим размерам ил по формуле:

 

(133)

кг.

 

– Сила инерции возвратно-поступательного движущихся масс определяется для режима максимальной частоты вращения при холостом ходе двигателя.

Максимальная разрывающая сила:

 

(134)

МН.

 

– Напряжение разрыва:

 

(135)

МПа

= 2,78 МПа < [ ] = 4÷10МПа – для алюминиевых сплавов.

 

Напряжение в верхней кольцевой перемычке:

Толщина верхней кольцевой перемычки форсированных двигателей с высокой степенью сжатия рассчитывается на срез и и изгиб от действия максимальных газовых усилий.

– Напряжение среза кольцевой перемычки:

 

τ = 0,0314 . рzмах . D / hп (136)

Мпа.

 

– Напряжение изгиба:

 

(137)

Мпа.

 

– Сложное напряжение:

 

(138)

Мпа.

= 16,6 МПа < [ ] = 30 ÷ 40 МПа.

 

Удельные давления юбки поршня и всей высоты на стенку цилиндра определяются соответственно:

 

, (139)

 

где Nmax – наибольшая нормальная сила, действующая на стенку цилиндра при работе двигателя на режиме максимальной мощности;

 

МПа.

(140)

МПа.


В целях предотвращения заклинивания поршней при работе двигателя диаметров головки и юбки поршня определяют, из наличия необходимых зазоров между стенками цилиндра и поршня в холодном состоянии:

 

; (141)

, (142)

 

где мм – диаметральный зазор между стенкой цилиндра и головкой поршня;

мм – диаметральный зазор между стенкой цилиндра и юбкой поршня;

 

мм;

мм.

 

Правильность установленных размеров проверяют по формулам:

 

(143)

.

(144)

 

где и - коэффициенты линейного расширения материалов цилиндров и поршня;

Тц,=388 К; Тг=523 К; Тю=403 К – соответственно температура стенок цилиндра, головки и юбки, принятые с учетом водяного охлаждения;

То – начальная температура цилиндра и поршня;

и - диаметральные зазоры в горячем состоянии;


5.1.2 Расчет поршневого кольца

Поршневые кольца работают в условиях высоких температур и значительных переменных нагрузок.

В качестве материала для колец используют серый чугун.

Материал кольца – серый чугун, Е = 1∙105 МПа – модуль упругости материала кольца.

Среднее давление кольца на стенку цилиндра:

 

, (145)

 

где Ао = 3,3∙t = 3,3∙4 = 13,2 мм – разность мужду величинами зазоров замка кольца в свободном рабочем состоянии.

 

Мпа.

 

При снижении частоты вращения двигателя и увеличении диаметра цилиндра величина рср. должна иметь значение ближе к нижнему пределу. Для определения хорошей приработки кольца и надежного уплотнения давления р кольца на стенку цилиндра в различных точках окружности должно изменяться по эпюре. Давление кольца на стенку цилиндра в различных точках окружности:

 

, (146)

 

где - для различных углов взято из таблицы.

Результаты подсчета р заносим в таблицу 11

 


Таблица 11- Давление кольца на стенку цилиндра.

, град              
1,05 1,05 1,14 0,9 0,45 0,67 2,85
р, МПа 0,152 0,152 0,165 0,13 0,065 0,097 0,413

 

По данным табл 11, строим эпюру давлений кольца на стенку цилиндра.

Значительное повышение давления у замка способствует равномерному износу кольца по окружности.

Напряжения изгиба кольца в рабочем состоянии:

 

(147)

МПа

 

Напряжение изгиба при надевании кольца на поршень:

 

, (148)

МПа

 

где m = 1,57 – коэффициент, зависящий от способа надевания кольца;

Монтажный зазор в замке поршневого кольца в холодном состоянии:

 

(149)

 

где минимальный допустимый зазор в замке кольца во время работы двигателя;

Тк=488 К; Тц=388 К; Т0=288 К – соответственно температура кольца, стенок цилиндра, принятые с учетом водяного охлаждения;

То – начальная температура цилиндра и кольца;

= = 1/град.

 

5.1.3 Расчет поршневого пальца

Во время работы двигателя поршневой палец подвергается воздействию переменных нагрузок, приводящих к возникновению напряжений изгиба, сдвига, смятия и овализации. В соответствии с указанными условиями работы к материалам, применяемым для изготовления пальцев, предъявляются требования высокой прочности и вязкости. Этим требованиям удовлетворяют цементированные малоуглеродистые и легированные стали.

Расчет поршневого пальца включает определение удельных давлений пальца на втулку верхней головки шатуна и на бобышки, а также напряжений от изгиба, среза и овализации.

Основные конструктивные размеры поршневого пальца берем из таблицы 51[1]:

Принимаем nм=1650 об/мин при Mmax = 277 Н∙м;

Наружный диаметр пальца dп = 28 мм;

Внутренний диаметр пальца dВ = 18,2 мм;

Длина пальца Lп = 78 мм;

Длина втулки шатуна Lш = 33 мм;

Расстояние между торцами бобышек b = 37 мм;

Материал поршневого пальца – сталь 15Х, Е=2∙105 МПа;

Палец плавающего типа.

Расчетная сила, действующая на поршневой палец:

– газовая:

 

(150)

МН


– инерционная:

 

(151)

МН,

 

где ωМ = π ∙ n /30 = 3,14 ∙ 1650 / 30=173 рад/с.

– расчетная:

 

(152)

МН,

 

где k – коэффициент, учитывающий массу поршневого пальца; k=0,76÷0,86; принимаем k=0,83.

Удельное давление пальца на втулку поршневой головки шатуна:

 

(153)

Мпа.

 

Удельное давление пальца на бобышки:

 

(154)

Мпа.

 

Напряжение изгиба в среднем сечении пальца:

 

(155)


где - отношение внутреннего диаметра к наружному;

Касательные напряжения среза в сечениях между бобышками и головкой шатуна:

 

(156)

 

Наибольшее увеличение горизонтального диаметра пальца при овализации:

 

(157)

 

Напряжения, возникающие при овализации пальца на внешней и внутренней поверхностях, определяют для горизонтальной и вертикальной плоскостей по следующим формулам:

Напряжение на внешней поверхности пальца:

– В горизонтальной плоскости (точки 1; Ψ=0º):

 

 

– В вертикальной плоскости (точки 3; Ψ=90º):

 

(159)

 

Напряжения овализации на внутренней поверхности пальца:

– В горизонтальной плоскости (точки 2; Ψ=0º)::

 

(160)

 

– В вертикальной плоскости (точки 4; Ψ=90º):

 

(161)

 

5.1.4 Расчет гильзы цилиндра

Диаметр цилиндра D = 100 мм;

Максимальное давление сгорания рz = 7,57 МПа;

Материал гильзы цилиндра – чугун, = 11∙10-6 1/К;

Е=1,0∙105МПа;

μ = 0,24 - коэффициент Пуассона для чугуна;

Толщина стенки гильзы цилиндра бг = 8 мм;

σz = 60 МПа – допустимое напряжение на растяжение для чугуна;

ΔТ= 110 К- перепад температур между внутренней и наружной поверхностью гильзы

Толщина стенки гильзы цилиндра выбирается конструктивно: δг = 8 мм.

Расчетная толщина стенки гильзы цилиндра:

 

δг.р = 0,5 ∙ D ∙ [ ] (162)

δг.р = 0,5∙ 100 ∙ ]= 6 мм;

 

Толщина стенки гильзы выбрана с некоторым запасом прочности, т.к. δг. > δг.р.

Напряжение растяжения от действия максимального давления:

 

σр = рzмах ∙ D /(2 ∙ δг) (163)

σр = 7,57 ∙ 100 / (2 ∙ 8) = 47,3 Мпа,

р] = 30÷60 МПа.

 

Температурные напряжения в гильзе:

 

Σt = Е ∙ αц ∙ Δt /(2 ∙ (1- μ)), (164)

 

где Δt=110ºC – температурный перепад между внутренней и наружной поверхнотями гильзы.

 

σt = 1 ∙ 105 ∙ 11 ∙ 106 ∙ 110 / (2 ∙ (1 - 0,24)) = 79,6 МПа.

 

Суммарные напряжения в гильзе цилиндра от действия давления газов и перепадов температур:

– На наружной поверхности:

 


σΣ́ = σр + σt (165)

σΣ́ =47,3+79,6= 126,9 МПа.

Σ́] =100÷130 МПа

 

– На внутренней поверхности:

 

σΣ// = σр – σt (166)

σΣ// =47,3 - 79,6= -32,2 МПа.

 


6. Расчет систем двигателя

 

6.1 Расчет элементов системы смазки

 

Масляной насос служит для подачи масла к трущимся поверхностям движущихся частей двигателя. По конструктивному исполнению масляные насосы делятся на винтовые и шестеренчатые. Шестеренчатые насосы отличаются простотой устройства, компактностью, надежностью в работе и являются наиболее распространенными в автомобильных и тракторных двигателях.

Масляная система обеспечивает смазку деталей двигателя в целях уменьшения трения, предотвращения коррозии, удаления продуктов износа и частичное охлаждение его отдельных узлов. В зависимости от типа и конструкции двигателя применяются различные системы смазки: разбрызгиванием, под давлением и комбинированная. Большинство автомобилей имеют комбинированную систему смазки.

Расчет масляного насоса.

Расчет масляного насоса состоит в определении размеров его шестерен. Этому расчету предшествует определение циркуляционного расхода масла в системе.

Общее количество тепла, выделяемого топливом, за 1 с: Qo= 220,1 кДж/с

Количество тепла отводимого маслом от двигателя:

 

(167)

кДж/с

 

Средняя теплоемкость масла: См=2,094 кДж /(кг∙К).

Плотность масла: rм = 900 кг/м3.


Циркуляционный расход масла:

 

, (168)

м3/c,

 

где =10 – температура нагрева масла, 0C.

Для стабилизации давления масла в системе двигателя циркуляционный расход масла обычно увеличивается в 2 раза:

 

(169)

м3/с.

 

Объемный коэффициент подачи: hн = 0,7.

В связи с утечками масла через торцовые и радиальные зазоры насоса расчетную производительность его определяют с учетом коэффициента подачи:

 

(170)

м3/с.

 

Рабочее давление масла в системе р =3,5∙105 Па.

Механический К.П.Д. масляного насоса hмн = 0,86.

Мощность, затрачиваемая на привод масляного насоса:

 

(171)

кВт.

 


6.2 Расчет элементов системы охлаждения

 

Охлаждение двигателя применяется в целях принудительного отвода тепла от нагретых деталей для обеспечения оптимального теплового состояния двигателя и его нормальной работы. Большая часть отводимого тепла воспринимается системой охлаждения, меньшая – системой смазки и непосредственно окружающей средой.

В зависимости от рода используемого теплоносителя в автомобильных и тракторных двигателях применяют систему жидкостного или воздушного охлаждения. В качестве жидкого охлаждающего вещества используют воду и некоторые другие высококипящие жидкости, а в системе воздушного охлаждения – воздух.

Расчет водяного насоса.

Водяной насос служит для обеспечения непрерывной циркуляции воды в системе охлаждения. В автомобильных и тракторных двигателях наибольшее применение получили центробежные насосы с односторонним подводом жидкости.

Количество тепла, отводимого от двигателя водой (по данным теплового баланса): Qв = 52000 Дж/c;

Средняя теплоемкость воды: Сж = 4187 Дж/кг∙К;

Средняя плотность воды: ρж = 1000 кг/м3;

Напор насоса: rш = 98000 Па;

- коэффициент подачи насоса;

=100C - температурный перепад воды при принудительной циркуляции; hн = 0,8 механический КПД водяного насоса.

Циркуляционный расход воды в системе охлаждения:

 

(172)

м3/c.


Расчетная производительность насоса:

 

(173)

м3/c.

 

Мощность потребляемая водяным насосом:

 

(174)

кВт.

 

Расчет радиатора

Расчет радиатора состоит в определении поверхности охлаждения, необходимой для передачи тепла от воды к окружающему воздуху.

Qв = Qвозд = 52000 Дж/c – количество тепла, отводимого от двигателя и передаваемого от воды к охлажденному воздуху;

Свозд = 1000 Дж/кг∙К – средняя теплоемкость воздуха;

Объемный расход воды: Gж = 0,00124 м3/с;

Средняя плотность воды: ρж = 1000 кг/м3;

- температурный переход воздуха в решетке радиатора;

- температура воды перед входом в радиатор;

0C- температурный перепад воды в радиаторе;

Тсрвозд= 400C средняя температура воздуха проходящего через радиатор;

К = 100 Вт/(м2∙град) – коэфф. теплопередачи для радиаторов грузовых а/м.

Количество воздуха, проходящего через радиатор:

 

(175)

кг/с.


Массовый расход воды, проходящей через радиатор:

 

(176)

кг/с.

 

Средняя температура охлаждающего воздуха, проходящего через радиатор:

 

(177)

 

Средняя температура воды радиаторе:

 

(178)

 

Поверхность охлаждения радиатора:

 

(179)

м2.

 

Расчет вентилятора

Вентилятор служит для создания направленного воздушного потока, обеспечивающего отвод тепла от радиатора. Массовый расход воздуха подаваемый вентилятором: G/возд = 2,6 кг/с; к.п.д. литого вентилятора: =0,6; tср.возд. = 500C; К = 100 коэффициент теплопередачи для радиаторов; Па – напор, создаваемый вентилятором.


Плотность воздуха при средней его температуре в радиаторе:

 

, (180)

кг/м3.

 

Производительность вентилятора:

 

, (181)

м3/с.

 

Фронтовая поверхность радиатора:

 

, (182)

 

где =20 м/с- скорость воздуха перед фронтом радматора без учёта скорости движения а/м (6÷24м/с).

Диаметр вентилятора:

 

. (183)

 

Окружная скорость вентилятора:

 

, (184)

 

где Ψл=2,9 –безразмерный коэффициент для криволинейных лопастей.


Число оборотов вентилятора:

 

Nвент = (60∙U) / ( ∙Dвент) = (60∙79)/(3,14∙0,39)=3870 об/мин. (185)

 

Мощность затрачиваемая на привод вентилятора:

 

(186)

кВт.

 


Литература

 

1. А.И. Колчин, В.П. Демидов "Расчет автомобильных и тракторных двигателей", Машиностроение, 1971г.

2. Е.В. Михайловский "Устройство автомобиля", Машиностроение, 1987г.

3. Руководство по эксплуатации автомобилей семейства ГАЗель и его модификации М.,2002г.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-18 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: