Определение параметров уравнения регрессии с




Использованием КМНК

 

Исходные значения величин Ct и It представлены в таблице 5:

Таблица 5

t Ct It
     
     
     
     
     
     
     
     
     
     
     
     
     
     

 

Методом наименьших квадратов (МНК) из уравнения (2.1) найти параметры a и b невозможно, так как оценки будут смещёнными. В связи с этим необходимо использовать косвенный метод наименьших квадратов (КМНК).

Для этого эндогенные переменные Ct, Yt выражаем через экзогенную переменную It. С этой целью подставляем выражение (2.1) в (2.2):

Yt = a+b*Yt + ut +It, (2.3)

отсюда получаем:

(2.4)

 

Подставляем выражение (2.4) в уравнение (2.1) и получаем:

(2.5)

Данное уравнение не содержит в правой части эндогенных переменных, а имеет только экзогенную переменную в виде It (инвестиций). Экзогенная переменная не коррелирует со случайной составляющей ut и, следовательно, параметры этого уравнения могут быть найдены с помощью МНК.

 

Представим это уравнение в следующем виде:

(2.6)

где

(2.7)

Используя имеющиеся в таблице 5 данные о величинах Ct и It, находим с помощью МНК несмещенные оценки a* и b* из уравнения:

Ct = a1+b1It, (2.8)

где a1 - несмещенная оценка a*;

b1- несмещенная оценка b*.

Для этих целей применяем имеющийся в табличном редакторе Excel пакет прикладных программ, реализующий определение параметров уравнения регрессии методом наименьших квадратов. Активизация этого метода производится командами: «Сервис» – «Анализ данных» – «Регрессия».

a1 b1
184280,63 0,44

 

После определения значений a1 и b1 необходимо определить несмещенные оценки величин a и b, использовав соотношения:

, (2.9)

 

где a", b" – соответственно несмещенные оценки a, b.

Сами значения величин a", b" определяем по формулам:

(2.10)

 

a" b"
127811,09 0,31

 

Использовав найденные значения a" и b", записываем уравнение функции потребления (2.1):

C(t)= 127811,09 + 0,31*Yt+ut.

Сравниваем найденные по формуле (2.10) значения a" и b" с величинами a и b, заданными в таблице 1 (aтабл. = 127500, bтабл. = 0,31) и рассчитываем проценты несовпадения данных величин по формулам:

(2.11)

,

.

 

2.3. Определение параметров уравнения регрессии с использованием МНК

 

Для определения параметров уравнения регрессии с помощью прямого МНК, необходимо определить по формуле (2.2)значения величин Yt (для t в пределах от t1 до t14), используя значения Ct и It из таблицы 5. Полученные значения заносим в таблицу 6.


Таблица 6

t Yt
   
   
   
   
   
   
   
   
   
   
   
   
   
   

 

Приняв в качестве исходных данных имеющиеся значения Ct и Yt, определяем с помощью МНК смещённые оценки aсм и bсм величин a и b, используя уравнение (2.1). Для этого используем имеющийся в табличном редакторе Excel пакет прикладных программ, реализующий определение параметров уравнения регрессии методом наименьших квадратов. Активация этого метода осуществляется командами: «Сервис» - «Анализ данных» - «Регрессия».

В рассматриваемой задаче:

aсм bсм
123638,32 0,32

 

Далее сравниваем полученные значения aсм и bсм с табличными значениями a и b, и находим проценты несовпадения данных величин по формулам:

(2.12)

,

.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-12-18 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: