Считают, что одна только зрительная информация, идущая от фоторецепторов, в обычных условиях могла бы за несколько минут насытить все информационные резервы мозга. Поэтому для организма существенной необходимостью является регуляция сенсорных притоков, фильтрация. Имеется несколько механизмов фильтрации: пресинаптическое и постсинаптическое торможение, адаптация, восходящие и нисходящие влияния, нейронные осцилляции и другие. Сенсорные сигналы регулируются в различных условиях: при выполнении движений, регуляции позы, при нейронной обработке зрительной, слуховой, соматосенсорной информации, а также запаха и вкуса. Могут регулироваться даже болевые ощущения. Одним из примеров существенной блокировки сенсорной информации является сон.
Выделяют некоторые механизмы, позволяющие ограничивать избыточность сенсорной информации.
Это, прежде всего сжатие афферентного канала, особенно выраженное в зрительной системе, наличие суживающейся сенсорной воронки, что резко ограничивает количество информации, идущей в высшие зрительные центры.
Другой прием ограничения избыточности информации — подавление или устранение поступления информации о менее существенных явлениях. Природа создала универсальный простой метод отбора: менее важно то, что не изменяется или изменяется медленно как во времени, так и в пространстве, наибольшее значение приобретает градиент изменения сенсорных воздействий. Зачастую именно эта информация наиболее важна для формирования приспособительных поведенческих актов.
4. Кодирование поступающей информации. Кодированием называют процесс преобразования информации в условную форму — код, совершаемый по определенным правилам.
В анализаторных системах позвоночных животных сигналы кодируются двоичным кодом, т. е. наличием или отсутствием залпа импульсов в тот или иной момент времени, в том или ином нейроне.
Такой способ кодирования не единственно возможный и не наиболее выгодный. Его достоинство — помехоустойчивость в связи с крайней простотой. Информация о раздражениях и их параметрах передается у позвоночных животных в виде отдельных групп или «пачек» импульсов («залпов импульсов»).
Возможно кодирование поступающей информации изменением числа волокон, по которым она параллельно передается, а также местом возбуждения в нейронном слое уровне зрительной системы определенной небольшой группы нейронов означает, что в определенной части поля зрения появилась световая полоска определенного размера и ориентации.
На высших уровнях анализаторов происходит переход от преимущественно временного кодирования признаков раздражителя (свойственного периферическим отделам) к преимущественно пространственному (в основном позиционному) коду.
5. Детектирование сигналов — специальный вид избирательного анализа отдельных признаков раздражителя и их конкретного биологического значения. Осуществляют такой анализ специализированные нейроны-детекторы, которые благодаря свойствам своих связей способны реагировать лишь на строго определенные параметры стимула.
Общим в распределении детекторов является иерархический принцип, согласно которому на более низких уровнях локализуются детекторы более простых признаков, обеспечивающие простой анализ. В высших отделах анализатора, как правило, сконцентрированы детекторы более сложных признаков.
6. Опознание образов — конечная и наиболее сложная операция анализатора. Она заключается в классификации образа, отнесении его к тому или иному классу объектов, с которыми ранее встречался организм. Это происходит на основе всей предыдущей обработки афферентного сигнала, после расщепления его нейронами-детекторами на отдельные признаки и их раздельного параллельного анализа. Задача операции опознания может быть сведена к построению мозгом «модели раздражителя» и ее выделению из множества других подобных моделей. Опознание завершается принятием решения о том, с каким объектом или ситуацией встретился организм.
Опознание происходит независимо от изменчивости сигнала. Мы надежно опознаем, например, предметы при различной их освещенности, окраске, размере, ракурсе, ориентации и положении в поле зрения. Точно так же знакомый голос опознается при разной его громкости, наличии звукового фона, а смысл речи — и при значительных изменениях ее тембра и темпа. Отсюда следует, что на каких-то высших уровнях анализатора организуется независимое от этих изменений признаков отражение сигнала — сенсорный образ.
Это совокупность сигналов, отображаемых в сходном пространственно-временном распределении процессов возбуждения и торможения на высшем уровне анализатора.
4.2. Общий план организации и функции сенсорных систем
Структура и деятельность сенсорных систем весьма сложные. Возбуждение, возникшее в каком-либо рецепторе, проводится в высшие отделы центральной нервной системы несколькими путями.
Во-первых, через так называемый специфический путь, который включает в себя:
1) рецептор;
2) первый чувствительный нейрон, расположенный всегда вне центральной нервной системы — в межпозвоночных спинномозговых ганглиях (от греч. ganglion— нервный узел, скопление нервных клеток), в полулунном, или Гассеровом, яремном, спиральном и других ганглиях черепно-мозговых нервов;
3) второй нейрон – в спинном, продолговатом или среднем мозге.
4) третий нейрон - в зрительных буграх,
5) четвертый нейрон — в проекционной зоне данного анализатора коры больших полушарий. Кроме этого, в среднем, спинном и продолговатом мозге происходит переключение на пути, ведущие в другие отделы головного мозга, в том числе и мозжечок, ретикулярную формацию и т. д. Из ретикулярной же формации возбуждение может направляться по так называемым неспецифическим путям во все отделы коры больших полушарий (рис. 4.1).
Рис. 4.1. Общий принцип структуры и функции анализаторных систем. СС – симпатическая система, регулирующая уровень возбудимости рецептора; К – кора, регулирующая поток информации; Рф – ретикулярная формация, активирующая кору.
Таким образом, возбуждение, возникшее в каком-либо одном рецепторе, распространяющееся по нервному волокну до первого нейрона, в дальнейшем, в разных отделах нервной системы, переключается на целый ряд нейронов и приходит в высшие отделы, в том числе в кору больших полушарий, по огромному числу различных нервных путей. Запись биотоков показывает, что при раздражении какого-либо рецептора возбуждение вначале регистрируется в проекционной зоне данного вида чувствительности (первичный ответ), а спустя несколько миллисекунд может наблюдаться и в других зонах коры (вторичный ответ). Поэтому различение раздражений разных рецепторов (даже в одном и том же анализаторе) обусловлено возникновением в коре больших полушарий различных сложнейших мозаик возбужденных и заторможенных пунктов, охватывающих разные части коры больших полушарий и других отделов мозга.
Анализ раздражителей происходит во всех звеньях анализатора. Первичный анализ осуществляется уже в рецепторах, которые реагируют только на строго определенные раздражители среды: рецепторы сетчатки — на свет, рецепторы внутреннего уха — на звуковые колебания и т. д. Более сложный анализ происходит в спинном мозгу, благодаря чему на тактильные или другие раздражители у спинального животного можно получить локальные ответные реакции. Наиболее сложный анализ осуществляется в корковых, концах сенсорных систем, в различных проекционных зонах коры больших полушарий.
Импульсы, поступающие через анализаторы в центральную нервную систему, поддерживая ее тонус на высоком уровне. При выключении у животных хирургическим путем нескольких сенсорных систем (зрительной, слуховой, вестибулярной, обонятельной) тонус нервной системы снижается, и такие животные почти все время снят.