Определение N-концевой аминокислоты




АМИНОКАРБОНОВЫЕ КИСЛОТЫ, БЕЛКИ

Схема лекции.

1. Аминокислоты

1.1. Классификация, номенклатура, изомерия.

1.2. Способы получения

1.3. Химические свойства

1.4. Оптическая изомерия

2. Белки

2.1 Классификация

2.2. Пептидная связь

АМИНОКИСЛОТЫ

Определение: Органические соединения содержащие в молекуле карбоксильную и аминогруппы, называются аминокислотами. Из остатков аминокислот построены белки – основной материал, из которого состоят объекты живой природы. Поэтому аминокислоты имеют огромное значение.

 

Классификация, номенклатура, изомерия.

26 α-аминокислот, из которых построены белки, имеют собственные названия. Например: глицин, аланин, валин, серин и т.д. Рациональная номенклатура строится по тривиальному названию карбоновой кислоты в префиксе ставится «амино» и буквой греческого алфавита обозначается положение гидроксигруппы. По систематической номенклатуре локантом обозначается положение аминогруппы. Карбоксильная группа всегда занимает первое положение. Название строится по углеводороду с добавкой префикса «амино» и суффиксов «овая» или «диовая».

Гомологический ряд одноосновных аминокислот начинается с аминомуравьиной или неполного амида угольной кислоты. Затем идет глицин или аминоуксусная, Эти две кислоты не имеют структурных изомеров. Изомерия аминокислот связана с положением аминогруппы и строением углеродного скелета. Поэтому у следующей карбоновой кислоты – пропионовой – молгут быть два изомера, различающихся положением аминогруппы: α-амино пропионовая и β- мино пропионовая кислота. Кислота с четырьмя углеродными атомами может существовать в виде пяти изомеров. Три соответствуют н -масляной кислоте и два изомасляной кислоте.

Все природные аминокислоты, кроме аминоуксусной, содержат асимметрический атом углерода. Все они относятся к L-ряду.

 

Способы получения

Получение α-аминокислот:

 

Гидролизом белков.

 

Действием аммиака на α-галоидкарбоновые кислоты:

 

 

Получение по методу Штреккера-Зелинского

По этому методу альдегид обрабатывают водным раствором смеси цианистого калия и хлорида аммония:

 

Получение β-аминокислот:

Присоединение аммиака к α,β-ненасыщенным кислотам:

Получение по методу Родионова:

 

Способы получения других аминокислот

Получение γ-аминокислоты из левулиновой кислоты:

Аминокислоты с более удаленными друг от друга функциональными группами получают перегруппировкой Бекмана. Например, получение капролактама и ω-аминокислоты (ω-капроновой кислоты):

 

Ароматические аминокислоты

пара - и мета -Аминобейзойные кислоты получают восстановлением соответствующих нитробензойных кислот:

 

орто -Изомер., так называемую антраниловую кислоту получают из фталевого ангидрида, через фталимид действием гипобромита:

 

 

Химические свойства

 

Аминокислоты – бесцветные кристаллические вещества с высокими температурами плавления, которые мало отличаются для разных аминокислот и поэтому не характерны. Плавление сопровождается разложением векщества. Плавление с разложением характерно для солей. Будучи солями аминокислоты хорошо растворимы в воде. Водный раствор аминокислот имеет нейтральную реакцию, что также характерно для солей. Аминокислоты представляют собой так называемые внутренние соли (биполярные ионы):

Такой ион в кислой среде ведет себя как катион, так как подавляется диссоциация карбоксильной группы, а в щелочной среде аминокислота ведет себя как анион:

Значение рH при котором достигается максимальная концентрация биполярного иона – называется изоэлектрической точкой.

 

Подобно другим соединениям со смешанными функциями, аминокислоты проявляют свойства кислот и аминов.

Аминокислоты образуют соли с основаниями. Соли α-аминокислот с тяжелыми металлами могут иметь комплексный характер:

соль имеет интенсивно синее окрашиваание.

Аминокислоты образуют соли с неорганическими кислотами:

 

Подобно другим кислотам, аминокислоты образуют сложные эфиры, хлорангидриды, амиды и т.д:

При действии азотистой кислоты аминокислоты образуют гидроксикислоты:

Аминогруппа в аминокислотах легко ацилируется при действии ангидридов и хлорангидридов кислот:

При алкилировании аминогруппы получаются вторичные и третичные аминокислоты. В избытке галоидного алкила образуются четырехзамещенныеаммонийные основания. Внутренние соли таких оснований называются бетаинами:

Поведение α, β и γ-аминокислот при нагревании:

α-аминокислоты межмолекулярно образуют циклические амиды – дикетопиперазины:

 

β-аминокислоты при нагревании отщепляют молекулу аммиака с образованием α,β-ненасыщенных кислот (аммонийная соль):

 

γ и δ-аминокислоты при нагревании отщепляют воду и образуют внутримолекулярные циклические амиды – лактамы:

 

БЕЛКИ

Классификация

Определение: Белки – это сложные высокомолекулярные органические соединения, построенные из остатков аминокислот, соединенных между собой амидными связями.

Белки разделяются на протеины (простые белки), в состав которых входят только остатки аминокислот и протеиды (сложные белки). Это белки построенные не только из аминокислот, но и из других веществ: сахаридов или остатков фосфорной кислоты и нуклеиновые кислоты.

Протеины классифицируются по трем группам.

1. По растворимости в воде:

Альбумины - растворимые в воде и разбавленных растворах солей.

Глобулины – мало растворимые в воде и растворимые в разбавленных растворах солей.

Проламины – нерастворимые в воде и растворимые в водном спирте.

Глютелины - нерастворимые в воде, в разбавленных растворах солей и водном спирте, растворимы в растворах кислот и щелочей.

Склеропротеины - нерастворимые в воде, в разбавленных растворах солей, водном спирте и в растворах кислот и щелочей.

 

2. Протеиды классифицируются по продуктам гидролиза:

Нуклеопротеиды – гидролизуются на протеины и нуклеиновые кислоты.

Фосфопротеиды - гидролизуются на протеины и фосфорную кислоту.

Глюкопротеиды - гидролизуются на протеины и углевод.

Хромопротеиды - гидролизуются на протеины и красящие вещества.

 

3. Все белки классифицируются по функциям в организме:

Резервные белки

Структурные белки

Белки, управляющие метаболизмом.

 

Как и аминокислоты, белки обладают амфотерным характером и изоэлектрической точкой. Положение изоэлектрической точки для белков может колебаться в широких пределах от кислой до сильнощелочной.

Все белки оптически активны. Большинство из них обладает левым вращением.

 

Существует ряд качественных цветных реакций на белки:

1. Ксантопротеиновая с азотной кислотой. Белки обработанные азотной кислотой дают желтое окрашивание.

2. Биуретовая с солями меди в присутствии щелочи. Белки дают фиолетовую окраску за счет образования комплексной соли.

3. Реакция Миллона. С раствором нитрата ртути в азотистой кислоте белки дают красное окрашивание.

4. Сульфгидрильная. При нагревании белков с раствором плюмбита натрия выделяется черный осадок сульфида свинца.

 

Белки построены из остатков 26 аминокислот. Аминокислоты делятся на заменимые, которые могут быть синтезированы организмом и незаменимые, которые человеческим организмом не синтезируются. Например, изолейцин и треонин.

Остатки аминокислот связаны в белковой молекуле амидными связями. Амидная связь в белках называется пептидной связью:

Карбоксильная группа одной молекулы аминокислоты образует амид, взаимодействуя с аминогруппой соседней молекулы аминокислоты. Отдельные пептидные звенья:

отличаются друг от друга только радикалами «R» при α-углеродном атоме.

 

Соединения, содержащие несколько аминокислотных остатков, называются пептидами. Соединения с большим количеством пептидных звеньев называются полипептидами.

 

При исследовании полипептидов в первую очередь выясняют из каких аминокислот построена макромолекула, а также какая аминокислота является N-концевой (свободная аминогруппа), а какая является С-концевой (свободная корбоксильная группа).

Белки нацело гидролизуются в аминокислоты концентрированной соляной кислотой или 2% соляной кислотой при нагревании и при повышенном давлении. Гидролиз белков можно провести под действием щелочи. Выбор реагента зависит от того, какие конкретно аминокислоты необходимо получить из молекулы белка.

 

Определение N-концевой аминокислоты

Проводят с использованием 2,4-динитрофторбензола:

При взаимодействии 2,4-динитрофторбензола с пептидом фтор нуклеофильно замещается на концевую аминогруппу. Затем пептид подвергают гидролизу. Продукт взаимодействия концевой аминокислоты с 2,4-динитрофторбензолом выделяют и кислоту идентифицируют. В тех случаях, когда 2,4-динитрофторбензол неприменим - используют фенилизотиоцианат.

 

 

 

Определение С-концевой аминокислоты:

Для определения С-концевой аминокислоты (со свободным гидроксилом) пептид нагревают с гидразином при 1000С несколько часов. При этом все аминокислоты, кроме концевой, образуют гидразиды:

Аминокислоту, не образовавшую гидразид, выделяют и идентифицируют.

Более простой метод заключается в применении фермента карбоксипептидазы, который расщепляет пептидную связь только С-концевой аминокислоты. Ее можно выделить и идентифицировать.

 

Построение полипептидной цепи проводят по методу Э.Фишера. Метод основан на применении хлорангидридов α-галогензамещеннх кислот. Например, надо получить цепи:

Глициналанин (Gly-Ala):

 

и аланинглицинвалин (Ala-Gly-Val):

 

Последовательность аминокислот, ковалентно связанных между собой в полипептиде, составляет так называемую первичную структуру белка. Но собственно полипептид белком еще не является. Пептиды неспособны к функционированию. Выполнять какие либо функции в организме способны более сложные системы построенные из нескольких полипептидных цепей, определенным образом связанных друг с другом. Надмолекулярные структуры, сформированные полопептидными цепями, характеризуются вторичной, третичной и четвертичной структурой белка.

Вторичная структура обусловлена водородными связями между пептидно не связанными кислородом карбонильной группы и водородом аминной группы. Если карбонил и аминная группа принадлежат разным полипептидным цепям, то такая вторичная структура называется β-структурой. Если карбонил и аминная группа принадлежат одной и той же полипептидной цепи, то такая вторичная структура называется α-структура. Следствием α-структуры является существование полипептидной цепи в форме спирали навитой на циллиндр. Длина одного остатка 1,5 А0, длина шага спирали 5,4 А0. Водородные связи α-спирали образуются между каждой первой и четвертой аминокислотой.

Третичная структура белка формируется в результате складывания или свивания нескольких α-спиралей. При этом спирали удерживаются друг около друга за счет образования водородных связей, образованных боковыми амино-, гидрокси- и карбоксильными группами, а также дисульфидными связями и электростатически.

Четвертичная структура формируется как агрегат нескольких полипептидных цепей, имеющих вторичную и третичную структуры. Полипептидные цепи удерживаются в четвертичной структуре теми же силами, что и в третичной структуре.

 

Разрушение первичной вторичной, третичной и четвертичной структуры белка называется денатурацией. Денатурация может быть вызвана термически (нагревание), химически, механически и т. д. При этом денатурация бывает обратимой и необратимой. Необратимой являются денатурация, связанная с разрушением первичной и вторичной структуры. После их разрушения белок самопроизвольно не восстанавливается. Например, гидролиз белков или варка яиц или мяса, взбивание яичного белка. Денатурация третичной и четвертичной структуры является обратимой. После их разрушения белки могут самопроизвольно восстанавливаться с возвращением биологических функций. Например, накручивание волос на бигуди (термическая денатурация) или химическая завивка.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-05-08 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: