Патент № 2143061
Изобретение относится к области насосостроения, более конкретно к насосам динамического действия, в частности к струйным насосам.
Новым является то, что корпус выполнен в виде цилиндрического патрубка с фланцами, сочлененного с коленом со стороны входа рабочей среды, в котором соосно корпусу установлен патрубок подвода инжектируемой среды; приемная и диффузорная камеры снабжены установленными в корпусе конусными седлами, обращенными друг к другу своими вершинами и разделенными соплом, сужающимся в сторону движения рабочей и инжектируемой сред; седла снабжены конусными завихрителями, выполненными в виде многозаходных винтовых (не менее трех) каналов, причем завихритесь, расположенный со стороны входа, снабжен центральным каналом, сообщенным с полостью патрубка подвода инжектируемой среды, а винтовые каналы завихрителя, расположенного со стороны выхода, выполнены только на участке, прилегающем к его большему основанию, и сообщены с кольцевым конусным каналом, образованным седлом и вершинным участком завихрителя.
На чертеже(рис. 3а) изображен продольный разрез предлагаемого устройства.
Оно состоит из корпуса 1, выполненного в виде цилиндрического патрубка с фланцами, соединенного с коленом 2, через которое соосно корпусу пропущен патрубок 3 подвода инжектируемой среды. В корпусе 1 установлены конусные седла 4 и 5, обращенные своими вершинами друг к другу и разделенные соплом 6, сужающимся в сторону движения рабочей и инжектируемой сред. Седла снабжены конусными завихрителями 7 и 8, имеющими многозаходные винтовые (не менее трех) каналы "б" и "ж". Завихритесь 7, расположенный со стороны входа среды, снабжен центральным каналом 9, сообщенным с полостью "в" патрубка 3 подвода инжектируемой среды. Винтовые каналы "ж" завихрителя 8, расположенного со стороны выхода среды, выполнены только на участке, прилегающем к его большему основанию. Завихритесь 8 снабжен конусным направляющим потока 10. Установка содержит также самоуплотняющиеся манжеты 11 и уплотнительные кольца 12 и 13.
|
Работает установка следующим образом.
Рабочая среда (жидкость) из полости "а", куда она попадает из нагнетательной линии системы (на чертеже не показано), направляется в каналы "б" многозаходного винтового завихрителя 7. Проходя их с плавным повышением скорости, она выходит через окна "А" винтовых каналов закрученной, имея при этом максимальную скорость. В центре закрученного потока создается давление ниже давления инжектируемой среды. В результате в полость "Б" устремляется инжектируемая среда и она встречается с рабочей средой. С этого места граничный слой рабочей среды постепенно увлекает за собой смежный ему слой инжектируемой среды. Последний, в свою очередь, увлекает смежный теперь уже ему слой инжектируемой среды и т.д. В результате происходит постепенное выравнивание скоростей рабочей и инжектируемой сред, которое заканчивается в сечении "В-В". С этого момента начинается снижение скорости при повышении статического давления смешиваемых сред, которое продолжается в кольцевом конусном канале "д" и далее в многозаходных каналах. Из последних смешанная среда выходит закрученной, продолжая свое движение в трубопроводе с постепенной потерей своего вращательного составляющего. Регулирование расхода инжектируемой среды достигается как изменением подачи рабочей среды, так и изменением сопротивления движению инжектируемой среды. Технико-экономические преимущества предлагаемой установки состоят в:
|
- повышении КПД благодаря тому, что рабочая среда при выходе инжектируемой среды из своего канала охватывает последнюю и постепенно увлекает ее во вращательно-поступательное движение, тем самым резко снижаются удары элементарных струек сред между собой, а также благодаря тому, что с момента выравнивания эпюры скоростей, скорость смешенного потока постепенно падает и постепенно растет статическое давление;
- резком снижении уровня вибрации и шума благодаря применению конусных завихрителей, обеспечивающих возможность рабочей среде плавно входить в контакт с инжектируемой средой без ощутимых ударов;
- расширении диапазона работы, которое достигается периферийным и центральным вводом соответственно рабочей и инжектируемой сред, что позволяет изменять расход последней за счет изменения расхода рабочей среды и сопротивления движению инжектируемой среды.
Рис. 3а
Патент № 2100659
Использование: в области струйной техники. Сущность изобретения: установка снабжена дополнительным силовым насосом с приемным каналом и размещенной между соплом и рабочей камерой соосно с ними диафрагмой с образованием двух радиальных кольцевых каналов, один из которых сообщен с приемным каналом перекачиваемой среды, а другой - с приемным каналом дополнительного силового насоса, при этом по крайней мере один из силовых насосов снабжен регулятором подачи. Установка снабжена регулятором осевого перемещения сопла в виде винтовой пары с гайкой, выполненной на корпусе рабочей камеры, и винтом на сопле. 1 ил.
|
Изобретение относится к насосостроению, в частности к регулируемым струйным насосным установкам, и может быть использовано в нефтяной, газовой и других отраслях промышленности для перекачки жидкостей и газов.
Известен струйный насос, содержащий рабочую камеру, приемный канал, сопло и регулирующую коническую иглу, установленную с возможностью осевого перемещения [1] Однако указанный насос обладает низкой надежностью при наличии в перекачиваемых средах механических примесей с абразивными включениями, что особенно имеет место при малых поперечных сечениях проточной части насоса.
Из известных устройств наиболее близким к предлагаемому является струйная насосная установка, содержащая рабочую камеру, приемный канал и сопло, гидравлически связанное с источником активной среды и установленное с возможностью осевого перемещения посредством поршня, который размещен в цилиндре, рабочие полости которого сообщены подводами пониженного и повышенного давления с источником управляющей среды [2] Наличие в известном устройстве подвижных уплотнительных элементов и гидроцилиндров с замкнутыми полостями снижает надежность его работы в коррозионно-активных средах, содержащих механические примеси. Кроме того, параметры рабочего сопла в данном случае не регулируются, а изменяется только положение сопла относительно рабочей камеры, что не обеспечивает необходимый диапазон регулирования, особенно в случае, когда активная среда жидкость, а перекачиваемая газ и влияние положения сопла на работу всей установки оказывается несущественным.
В основу настоящего изобретения положена задача создания струйной насосной установки, конструктивное решение которой обеспечит повышение надежности работы в условиях перекачки коррозионно-активных сред с механическими примесями, а также позволит расширить диапазон регулирования работы установки.
Поставленная задача достигается тем, что струйная насосная установка, содержащая рабочую камеру, приемный канал перекачиваемой среды и сопло, установленное с возможностью осевого перемещения и гидравлически связанное с силовым насосом, согласно изобретению снабжена дополнительным силовым насосом с приемным каналом и размещенной между соплом и рабочей камерой соосно с ними диафрагмой с образованием двух радиальных кольцевых каналов, один из которых сообщается с приемным каналом перекачиваемой среды, а другой с приемным каналом дополнительного силового насоса.
Целесообразно, чтобы по крайней мере один из силовых насосов был снабжен регулятором подачи.
В предпочтительном варианте, установка может быть снабжена регулятором осевого перемещения сопла в виде винтовой пары с гайкой, выполненной на корпусе рабочей камеры, и винтом на сопле.
На чертеже изображена предлагаемая насосная установка.
Струйная насосная установка содержит рабочую камеру 1, приемный канал 2, сопло 3, связанное гидравлическим каналом 4 с силовым насосом 5. Между соплом 3 и рабочей камерой 1 соосно с ними размещена диафрагма 6 с образованием двух радиальных кольцевых каналов 7 и 8. Канал 7 сообщается с приемным каналом 2, а канал 8 с дополнительным силовым насосом 9 через приемный канал 10. Дополнительный силовой насос 9 сообщен регулятором подачи 11, выполненным, например, в виде асинхронного электродвигателя, подключенного к электросети через преобразователь частоты переменного тока 12. Сопло 3 снабжено регулятором осевого перемещения 13, выполненным в виде винтовой пары, гайка которой выполнена на корпусе рабочей камеры 1, а винт на сопле 3.
Рис. 3б