Среда, виды коррозии, методы борьбы




Свыше 70% стальных конструкций эксплуатируются в атмосфере промышленных районов или подвержены непосредственному воздействию агрессивных сред. Агрессивность среды во многих случаях предопределяет выбор материала и конструктивной формы, оптимальный вид защитных покрытий и правила эксплуатации конструкций.

Показателями среды, определяющими степень ее агрессивности по отношению к строительным конструкциям, являются относительная влажность, температура, возможность образования конденсата, состав и концентрация газов и пыли, туманы агрессивных жидкостей, а также способы их воздействия на конструкции (непосредственно или через воздушную среду). В зависимости от факторов, формирующих эксплуатационную среду, строительные конструкции можно подразделить на: конструкции, эксплуатирующиеся на открытом воздухе, в общезаводской атмосфере, конструкции, эксплуатирующиеся внутри зданий, во внутрицеховой атмосфере. Условия эксплуатации конструкций в общезаводской атмосфере определяются климатическими особенностями региона расположения объекта и загрязненностью атмосферы технологическими выделениями. В нормах по климатологии территория России разделена в зависимости от влажности на три зоны (сухая, нормальная и влажная). Условия эксплуатации конструкций во внутрицеховой атмосфере предопределяются технологическим процессом.

Главным фактором, определяющим интенсивность коррозионного износа (разрушения), является относительная влажность. Наибольшая скорость коррозии реализуется при периодическом выпадении конденсата, однако скорость резко возрастает при достижении так называемой критической влажности, обычно принимаемой для стали 70...75%.

Установлено четыре степени агрессивности воздействия среды: I - неагрессивная (примерная скорость коррозии незащищенной стальной поверхности до 0,01 мм/год); II - слабоагрессивная (0,01...0,05 мм/год); III - среднеагрессивная (0,05...0,1 мм/год); IV -сильноагрессивная (более 0,1 мм/год). Нормы проектирования по защите строительных конструкций от коррозии влажностный режим помещений (или влажность воздуха для открытых конструкций) подразделяют на сухой, нормальный, влажный и мокрый. Нормами также установлены группы А, В, С и D в зависимости от вида и концентрации загрязненности воздуха агрессивными реагентами, солями, аэрозолями и пылью. На основании данных многолетних натурных наблюдений по степени агрессивности среды цехи основных отраслей промышленности распределены так:

I - сборочные, механические и ремонтные цехи, закрытые складские помещения;

I I - здания сталеплавильных и прокатных цехов, обжиговые и агломерационные цехи;

III - открытые конструкции, эксплуатируемые в индустриальной атмосфере, объекты связи, опоры линий передач, здания металлургических комбинатов, некоторые цехи цветной металлургии (обогатительные, сушильные и др.), химических комбинатов, открытые эстакады и т.п.;

IV - основные цехи предприятий цветной металлургии и химической промышленности.

По условиям протекания, которые весьма разнообразны, различают следующие виды коррозии: почвенная, структурная, электрокоррозия, контактная, щелевая, под напряжением, при трении, коррозионная кавитация, биокоррозия.

Строительные стальные конструкции подвержены главным образом электрохимической, атмосферной коррозии, которая определяется электрохимическими процессами на поверхности стали в присутствии влаги.

Для прогнозирования долговечности строительных конструкций важно знать не только скорость протекания, но и характер коррозионных разрушений. Коррозионное разрушение может иметь сплошной (общий) характер или сосредоточиваться на отдельных участках (местная коррозия). Сплошная коррозия распространяется по всей поверхности металла с одинаковой (равномерная коррозия) или неодинаковой (неравномерная коррозия) скоростью на различных участках.

Местная коррозия может быть следующих типов: пятнами (d>h, где d - ширина пятна, h - глубина пятна); язвами, кавернами (d>>h); точечная, питтинговая (d<h) - разрушение может быть весьма глубоким и даже перейти в сквозное; поверхностная - разрушение начинается с поверхности, но в дальнейшем распространяется преимущественно пол поверхностью металла; избирательная - разрушение отдельных структурных составляющих или одного из компонентов стали; межкристаллитная - разрушение происходит по границам зерен; внутрикристаллитная - характеризуется тем, что разрушение распространяется в глубь металла по телу зерен. Общая сплошная коррозия приводит к ослаблению сечения элемента конструкции и повышению уровня напряжений. Местная коррозия помимо ослабления сечения вызывает концентрацию напряжении, что повышает вероятность хрупкого разрушения стали. Поэтому местные коррозионные повреждения представляют особую опасность, особенно для конструкций, эксплуатируемых при пониженных температурах.

Кроме агрессивности эксплуатационной среды скорость коррозии зависит от химического состава стали. По коррозионной стойкости строительные стали можно разделить на три группы: 1) марганцовистые стали и сталь 14ГСМФР; 2) все стали, кроме входящих в первую и третью группы; 3) медистые и атмосферостойкие стали.

Стали 09Г2, 14Г2 и 14ГСМФР. входящие в первую группу, имеют пониженную коррозионную стойкость, их не следует применять в сильно - и среднеагрессивных средах.

Стали 09Г2С, 10Г2С1, 15Г2СФ по коррозионной стойкости аналогичны низкоуглеродистой стали.

Медистые стали (10ХСНД, 15ХСНД, 10ХНДП) имеют повышенную коррозионную стойкость и корродируют почти в 1,5 раза медленнее низкоуглеродистой стали. Атмосферостойкая сталь (10ХНДП) может быть применена без антикоррозионной защиты для открытых конструкции, расположенных в сухой климатической зоне.

При положительных температурах коррозионный износ практически не влияет на механические свойства стали. Снижение прочности коррдирующих конструкций происходит за счет потери толщины сечений. Однако, когда глубина коррозионных повреждений соизмерима с толщинами элементов конструкций, уменьшение прочностных характеристик стали при комнатной температуре становится существенным. Поэтому для тонкостенных элементов конструкций (t < 6 мм) следует учитывать это обстоятельство при проведении проверочных расчетов.

Более интенсивное снижение прочностных характеристик строительных сталей из-за коррозии имеет место при отрицательных температурах. При - 60° С для стали 09Г2С снижение предела текучести достигает 15...20%.

Как было отмечено выше, местные коррозионные повреждения являются концентраторами напряжений и снижают ударную вязкость. Отрицательное влияние коррозионного разрушения на сопротивляемость сталей хрупкому разрушению следует учитывать при количественных оценках работоспособности материала.

Обеспечение долговечной эксплуатации стальных конструкций возможно только при надежной защите их от разрушающего воздействия агрессивных сред. Способы защиты конструкций от коррозии можно разделить на три группы: воздействия на металл, воздействия на среду, комбинированные.

Для строительных конструкций широкое распространение получили методы нанесения защитных покрытий. В настоящее время из всех видов покрытий наиболее распространенными, доступными и достаточно эффективными являются лакокрасочные. Для защиты строительных конструкций от коррозии рекомендуют более 70 различных марок лакокрасочных материалов.

Выбор состава покрытий является технико-экономической задачей, при решении которой учитываются стоимость защитного покрытия, его долговечность, трудоемкость нанесения и другие факторы. Долговечность защитного покрытия в условиях производственной среды устанавливают обычно из опыта эксплуатации покрытий в аналогичных средах или экспериментальным путем.

Защитные свойства покрытия определяются тремя факторами: механическими и химическими свойствами пленки покрытия, сцеплением пленки с защищаемой поверхностью и коррозионной стойкостью конструкционного материала. Покрытие в большинстве случаев должно состоять из шпатлевки, грунтовки и покрывных слоев. Назначение грунтовки - обеспечить прочное сцепление (адгезию) лакокрасочной пленки с поверхностью металла. Адгезия зависит от качества подготовки поверхности элементов под окраску.

По типу пленкообразования лакокрасочные покрытия подразделяют на следующие основные виды.

1. Лаки и краски на основе битумов, лаков и смол (БТ), например краска БТ-177, битумно-масляный лак БТ-783. Применяются для закрытых конструкций в слабоагрессивных средах при повышенной влажности.

2. Перхлорвиниловые лаки и эмали (ХВ), например эмали ХВ -1100, ХВ-124, грунтовка ХВ-050, лак ХС-724. Рекомендуются для средне- и сильноагрессивных сред при повышенных требованиях к водостойкости, а также стойкости против растворов кислот, щелочей.

3. Эпоксидные эмали (ЭП), например эмали ЭП-733 и ЭП-575, грунтовка ЭП-0200, шпатлевка ЭП-ЭП10 и др. Применяются для слабо- и среднеагрессивных сред.

4. Кремнийорганические эмали (КО), например эмаль КО-811 (наносится без грунтовки), краска КО-042 и др. Рекомендуются для открытых конструкций, эксплуатируемых в среднеагрессивной среде.

5. Масляные краски (МА), например масляная черная МА-011, белила цинковые МА-012, железный сурик на олифе-оксоль. Могут быть применены для защиты конструкций в закрытых помещениях при слабоагрессивных средах. Не рекомендуются для производственных сельскохозяйственных зданий.

6. Глифталевые покрытия (ГФ). Грунтовки ГФ-021, ГФ-017 и другие применимы почти для всех видов покрытий. Грунтовка ГФ-017 рекомендуется для конструкций, монтируемых или эксплуатируемых при расчетной температуре -40 С



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: