Магнитоэлектронные приборы




 

Наиболее эффективным направлением микроминиатюризации магнитных элементов и устройств является применение новых физических явлений, когда используются электромагнитные процессы на доменном уровне. Магнитоэлектронные приборы обладают высокой степенью интеграции, обеспечивают большую плотность записи информации, имеют повышенную надежность, температурную и временную стабильности, могут осуществлять хранение записанной информации без потребления энергии.

В настоящее время в вычислительной технике и автоматике используют магнитные пленки и приборы на цилиндрических магнитных доменах.

Самым простейшим магнитным элементом является катушка из провода. Допустим, что она имеет w витков. Если через катушку пропустить постоянный ток I, то в ней возникает магнитное поле под воздействием магнитодвижущей силы: F = Iw. Обозначив длину катушки через l, можно определить напряженность магнитного поля, как H = F/l = Iw/l.

Разделив магнитодвижущую силу на сопротивление внешнего пространства Rв, получим значение магнитного потока, т.е. φ = F/Rв. Отнеся значение φ к единице площади, через которую проходит магнитный поток, определим индукцию В = φ /S. Затем, разделив индукцию В на напряженность магнитного поля H, определим магнитную проницаемость μ = В/H, которая является характеристикой материала, заполняющего объем катушки. Существуют материалы (железо, никель, кобальт и их сплавы), которые обладают аномально большими значениями магнитной проницаемости (μ = 108). Из приведенных выше соотношений легко определить значение индуктивности L = w2Sμ/l.

Среди магнитных материалов с точки зрения микроминиатюризации наиболее перспективны ферромагнетики, которые в результате сильного электростатического магнитного взаимодействия между электронами соседних атомов разбиваются на большое число областей самопроизвольной намагниченности (домены). Магнитные моменты атомов в доменах параллельны. Домены имеют определенную форму и размеры 10-1–10-6 см. Оптимальной считается доменная структура цилиндрической формы.

Соседние домены разделяются переходными слоями, называемыми границами или стенками доменов. Процесс перемагничивания ферромагнетиков во внешнем магнитном поле происходит либо вращением доменов, либо смещением их границ или протеканием обоих процессов одновременно. При изменении температуры может меняться магнитное состояние ферромагнетиков. В ферромагнетиках существуют определенные направления намагничивания (магнитная анизотропия).

Тонкие магнитные пленки (ТМП) изготовляют из металлов, сплавов и ферритов. Для создания ТМП на подложку из немагнитного материала (стекла) вакуумным распылением или электроосаждением наносят тонкий слой магнитного материала толщиной 0,05 – 10 мкм. Вакуумное распыление обеспечивает получение наиболее качественных пленок, причем наиболее удачные результаты получаются при напылении пермаллоя. Недостаток электроосаждения заключается в том, что пленки, получаемые этим способом, обладают худшими характеристиками по сравнению с исходными магнитными материалами.

Тонкие магнитные пленки характеризуются анизотропией, приводящей к изменению формы петель гистерезиса при намагничивании по разным направлениям пленки. Так, по оси легкого намагничивания пленка имеет прямоугольную петлю гистерезиса, а по оси тяжелого намагничивания – непрямоугольную петлю с очень малым гистерезисом. Толщина пленки значительно меньше ее линейных размеров. При определенной толщине пленка оказывается однодоменной, что приводит к особенностям перемагничивания ТПМ. Процесс перемагничивания происходит очень быстро (за наносекунды), т.е. ТМП может обеспечить значительное повышение быстродействия. Намагничивание происходит только в плоскости пленки, позволяя использовать плоские управляющие обмотки.

 
 

На ТМП выполняют запоминающие устройства для цифровых вычислительных машин из отдельных запоминающих элементов, наносимых на общую подложку в виде матрицы в едином технологическом цикле. Для запоминающих элементов формируют плоские ТМП квадратной (рис.5) или круглой формы. В таких элементах можно использовать переключения взаимно перпендикулярными полями. Запись информации в элементах памяти производится подачей двух импульсов тока. Плоские тонкопленочные элементы памяти обладают большими потоками рассеивания, поэтому лучше использовать цилиндрические ТМП, имеющие замкнутый магнитопровод и, следовательно, меньшие потоки рассеивания. Проводники для управления такими ТМП пропускают через отверстие цилиндра, а также наматывают по его внешнему диаметру. Цилиндрические ТМП можно наносить непосредственно на провода управления.

 

Рис. 5. Запоминающий элемент на ТМП: 1, 3, 4 числовая, разрядная и выходная шины, 2 – ТМП

В приборах на структурах из цилиндрических магнитных доменов (ЦМД) применяют монокристаллические пленки из ортоферритов или гранатов. Толщины пленок соответствуют размерам одиночных доменов, которые образуются при воздействии сильных внешних магнитных полей. При изменении этих полей ЦМД перемещаются. В пленках монокристаллов ось легкого намагничивания направлена перпендикулярно плоскости пленки, а ось тяжелого намагничивания расположена в ее плоскости. Диаметр ЦМД составляет единицы – десятки микрометров.

Структуры на гранатах термостабильнее, чем на ортоферритах. Кроме того, в гранатах размеры ЦМД меньше, что позволяет увеличить плотность записи информации. Размеры и число ЦМД определяются внешним магнитным полем смещения.

Приборы на ЦМД используют для построения логических и запоминающих устройств, где единичные ЦМД служат элементарным носителем информации. Каждое информационное состояние устройства определяется положением ЦМД в магнитной монокристаллической пленке. Положение и число ЦМД в устройствах должно быть строго определенным.

Запоминающее устройство на основе приборов с ЦМД представляет собой схему продвижения доменов, которая является запоминающим регистром. Информация в регистр записывается в виде последовательности ЦМД, располагаемых по его длине в соответствии с входной информацией. Если информация представляет собой длинную последовательность входных сигналов, превышающих требуемую длину магнитной монокристаллической пленки, то регистр выполняется многорядным.

Запоминающее устройство с ЦМД служит аналогом электромеханического запоминающего устройства (магнитной ленты, диска, барабана). Однако оно значительно превышает электромеханическое устройство по надежности, быстродействию, объемам запоминаемой информации и отличается малыми массой и габаритами, потребляя значительно меньше энергии.

С помощью приборов на ЦМД может быть создан полный набор логических элементов, из которых строятся сложные логические устройства, в том числе с использованием оптических методов считывания.


ЛИТЕРАТУРА

 

1. Петров К.С. Радиоматериалы, радиокомпоненты и электроника: Учебное пособие для вузов. – СПб: Питер, 2003. – 512 с.

2. Опадчий Ю.Ф. и др. Аналоговая и цифровая электроника: Учебник для вузов / Ю.Ф. Опадчий, О.П. Глудкин, А.И. Гуров; Под. ред. О.П. Глудкина. М.: Горячая Линия – Телеком, 1999. – 768 с.

3. Акимов Н.Н. и др. Резисторы, конденсаторы, трансформаторы, дроссели, коммутационные устройства РЭА: Справочник / Н.Н. Акимов, Е.П. Ващуков, В.А. Прохоренко, Ю.П. Ходоренок. Мн.: Беларусь, 2004. – 591 с.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-23 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: