Понятие информации (informatio - разъяснение, осведомление, изложение) является одним из основных, ключевых понятий не только в информатике (в информологии - области знаний, изучающей проявление информации, её представление, измерение и т.д.), но и в математике, в физике и др. Понятие “информация” - плохо формализуемое и структурируемое понятие. В силу его всеобщности, объёмности, расплывчатости оно часто понимается неточно и неполно не только обучаемыми. Как правило, это понятие в курсе информатики не определяется, принимается как исходное базовое понятие, неопределяемый терм.
Информация трактуется по разному, например, как:
• любая сущность, которая вызывает изменения в некоторой информационно-логической (инфологической - состоящей из данных, знаний, абстракций и т.д.) модели системы (математика, системный анализ);
• сообщения, полученные системой от внешнего мира в процессе адаптивного управления, приспособления (теория управления, кибернетика);
• отрицание энтропии, отражение меры хаоса в системе (термодинамика);
• связи, устраняющие неопределённость в системе (теория информации);
• вероятность выбора в системе (теория вероятностей);
• отражение разнообразия в системе (физиология, биокибернетика);
• отражение материи, атрибут сознания, “интеллекта” системы (философия).
Но существует более полное понятие. Информация - это некоторая последовательность (налицо упорядоченность) сведений, знаний, которые актуализируемы (получаемы, передаваемы, преобразуемы, сжимаемы или регистрируемы) с помощью некоторых знаков (символьного, образного, жестового, звукового, сенсомоторного типа). Это приращение, развитие, актуализация знаний, возникающее в процессе целеполагающей интеллектуальной деятельности человека. Никакая информация, никакое знание не появляется сразу - этому предшествует этап накопления, осмысления, систематизации опытных данных, взглядов. Знание - продукт такого процесса. Мышление - необходимый атрибут такого процесса.
|
Информация может существовать в пассивной (не актуализированной) и активной (актуализированной) форме.
Пример. Информация актуализируется сообщениями, при этом формы облачения информации в сообщения различны, например, для живых существ - сигналы, жесты, для технических устройств - сигналы. Информация передаваемая от одного человека другому, может передаваться символами (письмо), жестами (сигнальщик на боевом корабле), звуками (диктор), геометрическими фигурами (чертёжник), художественными образами (балерина). Информация передающаяся животными может быть передана звуками (лай, вой, писк), ситуационным поведением (образами). Информация в технических устройствах, автоматах может быть передана электрическими, магнитными, световыми импульсами, как это происходит в ЭВМ.
Информация в философском аспекте бывает, в основном: мировоззренческая; эстетическая; религиозная; научная; бытовая; техническая; экономическая; технологическая.
Все это (с человеком) составляет ноосферу общества - более высокое состояние биосферы, возникшее в результате эволюции, структурирования, упорядочивания и гармонизации связей в природе и обществе под воздействием целеполагающей деятельности человечества. Это понятие введено впервые В. И. Вернадским в качестве отражения эволюции общества и природы т.е. системы, в рамках которой потенциально может быть реализовано гармоническое, устойчивое развитие (эволюция) систем “Общество” и “Природа”, а также постепенное слияние, интеграция и гармонизация наук о природе, познании и об обществе. Без этого невозможно построение информационного общества.
|
Информация может оказаться и вредной, влияющей негативно на сознание, например, воспитывающей восприятие мира от безразличного или же некритического - до негативного, "обозлённого", неадекватного. Информационный поток - достаточно сильный раздражитель.
Пример. Негативной информацией - раздражителем может быть информация о крахе коммерческого банка, о резком росте (спаде) валютного курса, об изменении налоговой политики и др.
Информация не существует без других типов ресурсов - энергии, вещества, организации, как и они не могут существовать без информации. Любые взаимодействия систем (подсистем) - взаимодействия всегда материальноэнерго-информационные. Выявление (структурирование, упорядочивание, установление отношений), формализация (описание формальными средствами, языками), изучение (разработка моделей, методов, алгоритмов), применение (разработка и актуализация технологий) этих взаимодействий и составляет основную задачу информатики - как науки, как человеческой деятельности.
Если отвлечься от конкретного смыслового содержания информации и рассматривать сообщения информации как последовательности знаков, сигналов, то их можно представлять битами, а измерять в байтах, килобайтах, мегабайтах, гигабайтах, терабайтах и петабайтах.
|
Информация может пониматься и интерпретироваться по разному. Вследствие этого имеются различные подходы к определению методов измерения информации, меры количества информации. Раздел информатики (теории информации) изучающий методы измерения информации называется информметрией.
Количество информации - числовая величина, адекватно характеризующая актуализируемую информацию по разнообразию, сложности, структурированности, определённости, выбору (вероятности) состояний отображаемой системы.
Если рассматривается система, которая может принимать одно из n возможных состояний, то актуальна задача оценки такого выбора, исхода. Такой оценкой может стать мера информации (или события). Мера - это некоторая непрерывная действительная неотрицательная функция, определённая на множестве событий и являющаяся аддитивной т.е. мера конечного объединения событий (множеств) равна сумме мер каждого события.
1. Мера Р. Хартли. Пусть имеется N состояний системы S или N опытов с различными, равновозможными последовательными состояниями системы. Если каждое состояние системы закодировать, например, двоичными кодами определённой длины d, то эту длину необходимо выбрать так, чтобы число всех различных комбинаций было бы не меньше, чем N. Наименьшее число, при котором это возможно или мера разнообразия множества состояний системы задаётся формулой Р. Хартли: H=k log а N, где k - коэффициент пропорциональности (масштабирования, в зависимости от выбранной единицы измерения меры), а - основание системы меры.
Если измерение ведётся в экспоненциальной системе, то k=1, H=lnN (нат); если измерение - в двоичной системе, то k=1/ln2, H=log2N (бит); если измерение - в десятичной системе, то k=1/ln10, H=lgN (дит).
Пример. Чтобы узнать положение точки в системе из двух клеток т.е. получить некоторую информацию, необходимо задать 1 вопрос ("Левая или правая клетка?"). Узнав положение точки, мы увеличиваем суммарную информацию о системе на 1 бит (I=log2 2). Для системы из четырех клеток необходимо задать 2 аналогичных вопроса, а информация равна 2 битам (I=log24). Если система имеет n различных состояний, то максимальное количество информации равно I=log2 n.
По Хартли, для того, чтобы мера информации имела практическую ценность - она должна быть такова, чтобы отражала количество информации пропорционально числу выборов.
Пример. Имеются 192 монеты из которых одна фальшивая. Определим сколько взвешиваний нужно произвести, чтобы определить ее. Если положить на весы равное количество монет, то получим 2 возможности (мы сейчас отвлекаемся от того, что в случае фальшивой монеты таких состояний будет два - состояния независимы): а) левая чашка ниже; б) правая чашка ниже. Таким образом, каждое взвешивание дает количество информации I=log22=1 и, следовательно, для определения фальшивой монеты нужно сделать не менее k взвешиваний, где k удовлетворяет условию log22k³ log2192. Отсюда, k=7. Следовательно, нам необходимо сделать не менее 7 взвешиваний (достаточно семи).
Формула Хартли отвлечена от семантических и качественных, индивидуальных свойств рассматриваемой системы (качества информации, содержащейся в системе, в проявлениях системы с помощью рассматриваемых N состояний системы). Это основная положительная сторона этой формулы. Но имеется и основная отрицательная сторона: формула не учитывает различимость и различность рассматриваемых N состояний системы.
Уменьшение (увеличение) Н может свидетельствовать об уменьшении (увеличении) разнообразия состояний N системы.
Обратное, как это следует из формулы Хартли (основание логарифма берётся больше 1), - также верно.
2.Мера К. Шеннона. Формула Шеннона дает оценку информации независимо, отвлеченно от ее смысла:
n I = — å pi log2 pi, i=1
где n - число состояний системы; рi - вероятность (или относительная частота) перехода системы в i-ое состояние, причем сумма всех pi равна 1.
Если все состояния равновероятны (т.е. рi=1 /n), то I=log2n.
К. Шенноном доказана теорема о единственности меры количества информации. Для случая равномерного закона распределения плотности вероятности мера Шеннона совпадает с мерой Хартли. Справедливость и достаточная универсальность формул Хартли и Шеннона подтверждается и данными нейропсихологии.
Пример. Время t реакции испытуемого на выбор предмета из имеющихся N предметов линейно зависит от log2N: t=200+180log2N (мс). По аналогичному закону изменяется и время передачи информации в живом организме. В частности, один из опытов по определению психофизиологических реакций человека состоял в том, что перед испытуемым большое количество раз зажигалась одна из n лампочек, которую он должен указать. Оказалось, что среднее время, необходимое для правильного ответа испытуемого, пропорционально не числу n лампочек, а именно величине I определяемой по формуле Шеннона, где pi - вероятность зажечь лампочку номер i.
Сообщение о наступлении события с меньшей вероятностью несёт в себе больше информации, чем сообщение о наступлении события с большей вероятностью. Сообщение о наступлении достоверно наступающего события несёт в себе нулевую информацию (и это вполне ясно, - событие всё равно произойдёт когда-либо).
Если в формуле Шеннона обозначить fi = —n log2 pi, то получим, что I можно понимать как среднеарифметическое величин fi.
Отсюда, fi можно интерпретировать как информационное содержание символа алфавита с индексом i и величиной pi вероятности появления этого символа в сообщении, передающем информацию.
Основными положительными сторонами формулы Шеннона является её отвлечённость от семантических и качественных, индивидуальных свойств системы, а также то, что в отличие от формулы Хартли она учитывает различность, разновероятность состояний - формула имеет статистический характер (учитывает структуру сообщений), делающий эту формулу удобной для практических вычислений. Основные отрицательные стороны формулы Шеннона: она не различает состояния (с одинаковой вероятностью достижения, например), не может оценивать состояния сложных и открытых систем и применима лишь для замкнутых систем, отвлекаясь от смысла информации.
Увеличение (уменьшение) меры Шеннона свидетельствует об уменьшении (увеличении) энтропии (организованности) системы. При этом энтропия может являться мерой дезорганизации систем от полного хаоса (S=Smax) и полной информационной неопределённости (I=Imin) до полного порядка (S=Smin) и полной информационной определённости (I=Imax) в системе.
Пример. Чем ближе движущийся объект к нам, тем полнее информация обрабатываемая нашими органами чувств, тем чётче и более структурирован (упорядочен) объект. Чем больше информации мы имеем о компьютерной технике, тем меньше психологический барьер перед ним (согласно основному соотношению между энтропией и информацией).
3. Термодинамическая мера. Информационно-термодинамический подход связывает величину энтропии системы с недостатком информации о её внутренней структуре (не восполняемым принципиально, а не нерегистрируемым). При этом число состояний определяет, по существу, степень неполноты наших сведений о системе.
Пусть дана термодинамическая система (процесс) S, а Н0, Н1 - термодинамические энтропии системы S в начальном (равновесном) и конечном состояниях термодинамического процесса, соответственно. Тогда термодинамическая мера информации (негэнтропия) определяется формулой:
Н(Н0,Н1)=Н0 — Н1.
Эта формула универсальна для любых термодинамических систем. Уменьшение Н(Н0,Н1) свидетельствует о приближении термодинамической системы S к состоянии статического равновесия (при данных доступных ей ресурсах), а увеличение - об удалении.
Поставим некоторый вопрос о состоянии некоторой термодинамической системы. Пусть до начала процесса можно дать p1 равновероятных ответов на этот вопрос (ни один из которых не является предпочтительным другому), а после окончания процесса - p2 ответов. Изменение информации при этом:
D I = k ln(p1 / p2) = k (ln p1 — ln p2).
Если p1 > p2 (D I >0) - прирост информации, т.е. сведения о системе стали более определёнными, а при p10 - более низкой организации).
Термодинамическая мера (энтропия) применима к системам, находящимся в тепловом равновесии. Для систем, далёких от теплового равновесия, например, живых биосистем, мера - энтропия - менее подходящая.
4. Энергоинформационная (квантово-механическая) мера. Энергия (ресурс) и информация (структура) - две фундаментальные характеристики систем реального мира, связывающие их вещественные, пространственные, временные характеристики. Сейчас актуально говорить о биоэнергоинформационных мерах, отражающих механизм взаимосвязей биофизикоинформационных и вещественно-энергетических процессов в системе, в ноосфере.