Прогнозирование — частный вид моделирования как основы познания и управления.
Роль прогнозирования в управлении страной, отраслью, регионом, предприятием очевидна. Необходимы учет СТЗП-факторов (социальных, технологических, экономических, политических), факторов конкурентного окружения и научно-технического прогресса, а также прогнозирование расходов и доходов предприятий и общества в целом (в соответствии с жизненным циклом продукции — во времени и по 11-ти стадиям международного стандарта ИСО 9004). Проблемы внедрения и практического использования математических методов эконометрического прогнозирования связаны прежде всего с отсутствием в нашей стране достаточно обширного опыта подобных исследований, поскольку в течение десятилетий планированию отдавался приоритет перед прогнозированием.
В конкретных задачах прогнозирования необходимо провести классификацию рисков, поставить задачу оценивания конкретного риска, провести структуризацию риска. Риски необходимо учитывать при прогнозировании экономических последствий принимаемых решений, поведения потребителей и конкурентного окружения, внешнеэкономических условий и макроэкономического развития России, экологического состояния окружающей среды, безопасности технологий, экологической опасности промышленных и иных объектов.
Большое число рисков связано с природными явлениями. Их можно объединить под именем «экологические». К ним относятся, в частности риски, связанные с неопределенностью ряда природных явлений. Типичным примером является погода, от которой зависят урожайность (а потому и цены на сельскохозяйственные товары), расходы на отопление и уборку улиц, доходы от туризма и др. Особое значение имеют риски, связанные с недостаточными знаниями о природе (например, неизвестен точный объем полезных ископаемых в том или ином месторождении, а потому нельзя точно предсказать развитие добывающей промышленности и объем налоговых поступлений от ее предприятий). Нельзя забывать о рисках экологических бедствий; и катастроф типа ураганов, смерчей, землетрясений, цунами, селей и др.
В настоящее время при компьютерном и математическом моделировании для описания неопределенностей все чаще используют такой метод, как энтропия. Некоторые виды неопределенностей связаны с безразличными к организации силами — природными (погодные условия) или общественными (смена правительства).
Разнообразные формальные методы оценки рисков и управления ими во многих случаях (реально во всех нетривиальных ситуациях) не могут дать однозначных рекомендаций. В конце процесса принятия решения — всегда человек, менеджер, на котором лежит ответственность за принятое решение.
Поэтому процедуры энтропии естественно применять не только на конечном, но и на всех остальных этапах анализа рассматриваемого организацией проекта, используя при этом весь арсенал теории и практики энтропии.
Рассмотрим использования энтропии на примере прогноза погоды.
Пусть для некоторого пункта вероятность того, что 15 июня будет идти дождь, равна 0,4, а вероятность того, что дождя не будет, равна 0,6. Пусть далее для этого же пункта вероятность дождя 15 октября равна 0,8, а вероятность отсутствия дождя в этот день — всего 0,2. Предположим, что определенный метод прогноза погоды 15 июня оказывается правильным в 3/5 всех тех случаев, в которых предсказывается дождь, и в 4/5 тех случаев, в которых предсказывается отсутствие осадков; в применении же к погоде 15 октября этот метод оказывается правильным в 9/10 тех случаев, в которых предсказывается дождь, и в половине случаев, в которых предсказывается отсутствие дождя (сравнительно большой процент ошибок в последнем случае естественно объясняется тем, что предсказывается маловероятное событие, предугадать которое довольно трудно). Спрашивается, в какой из двух указанных дней прогноз дает нам больше информации о реальной погоде?
Обозначим через β1 и β2 опыты, состоящие в определении погоды в рассматриваемом пункте 15 июня и 15 октября. Мы считаем, что эти опыты имеют всего по два исхода — В (дождь) и (отсутствие осадков); соответствующие таблицы вероятностей имеют вид:
Опыт β1
исходы | В | ![]() |
вероятн. | 0,4 | 0,6 |
Опыт β2
исходы | В | ![]() |
вероятн. | 0,8 | 0,2 |
Следовательно, энтропии опытов β1 и β2 равны
Н (β1 ) = -0,4 log 0,4 — 0,6 log 0,6 0,97 бита,
Н (β2) = - 0,8 log 0,8 - 0,2 log 0,2 0,72 бита.
Пусть теперь α1 и α2 — предсказания погоды на 15 июня и на 15 октября. Опыты α1 и α2 также имеют по два исхода: А (предсказание дождя) и (предсказание сухой погоды); при этом пары опытов (α1, β1) и (α2,β2) характеризуются следующими таблицами условных вероятностей:
Пара (α1, β1)
![]() | ![]() | ![]() | ![]() |
0,6 | 0,4 | 0,2 | 0,8 |
Пара (α2,β2)
![]() | ![]() | ![]() | ![]() |
0,9 | 0,1 | 0,5 | 0,5 |
(). Эти таблицы позволяют определить также и неизвестные нам вероятности р1(А) и р1(
),р2(А) и р2(
) исходов А и
опытов α1 и α2. По формуле полной вероятности имеем для опыта β1
0,4=р(В)= р1(А) + р1(
)
=0,6· р1(А) +0,2· р1(
)
и для опыта β2
0,8 = р (В)= р2(А) + р2(
)
=0,9· р2(А)+0,5· р2(
).
Так как р1()= 1 — р1(А), р2(
)= 1 — р2(А), то отсюда получаем
р1(А)= р1()= 0,5, р2(А) = 0,75, р2(
) = 0,25.
Подсчитаем теперь энтропии НА(β1), (в битах):
НА(β1)= -0,6• log 0,6 - 0,4 • log 0,4 0,97,
= - 0,2• log 0,2 – 0,8• log0,8
0,72
и
= - 0,9 • log 0,9 - 0,1• log 0,1
0,47,
= - 0,5 • log 0,5 - 0,5• log 0,5= 1.
Следовательно,
р1(А) НА(β1)+ р1(
)
0,84,
р2(А)
+ р2(
)
0,60.
Таким образом, информация, содержащаяся в прогнозе погоды на 15 июня (опыт α1) о реальной погоде в этот день (об опыте β2), равна
I (α1, β1) = Н(β1) -
0,97 -0,84 = 0,13 бит,
что несколько больше, чем информация о реальной погоде 15 октября (об опыте β2), содержащаяся в прогнозе погоды на этот день (в опыте α2):
I (α2, β2) = Н(β2) -
0,72 — 0,60 = 0,12 бит.
Этот результат позволяет считать прогноз погоды па 15 нюня более ценным, чем прогноз на 15 октября, несмотря на то, что последний прогноз чаще оказывается правильным: действительно, в силу формулы полной вероятности, для прогноза погоды на 15 нюня вероятность оказаться правильным равна
р1(А) + р1(
)
= 0,5• 0,6 + 0,5• 0,8 = 0,7,
в то время как для прогноза погоды на 15 октября эта вероятность равна
р2(А) + р2(
)
= 0,75 • 0,9 + 0,25 • 0,5 = 0,8.
Заключение
Энтропия как физическая переменная первично возникла из задач описания тепловых процессов. Впоследствии она стала широко использоваться во всех областях науки.
Информация - это знание, которое используется для развития, совершенствования системы и её взаимодействий с окружающей средой.
Информация сама развивается вслед за развитием системы. Новые формы, принципы, подсистемы, взаимосвязи и отношения вызывают изменения в информации, ее содержании, формах получения, переработки, передачи и использования. Благодаря потокам информации система осуществляет целесообразное взаимодействие с окружающей средой, т.е. управляет или управляема. Своевременная и оперативная информация может позволить стабилизировать систему, адаптироваться, восстанавливаться при нарушениях структуры и/или подсистем. От степени информированности системы, от взаимодействия системы и среды зависит развитие и устойчивость системы.
В современном мире все большее значение в управлении организацией отдается прогнозированию. Любая организация в процессе своей деятельности сталкивается с различными рисками, которые в большей или меньшей степени влияют на ее состояние. Многочислелны примеры ситуаций, связанных с социальными, технологическими, экономическими, политическими, экологическими и другими рисками. Именно в таких ситуациях обычно и необходимо прогнозирование. Известны различные виды критериев, используемых в теории принятия решений в условиях неопределенности (риска). Из-за противоречивости решений, получаемых по различным критериям, очевидна необходимость применения энтропии.
Список используемой литературы
1. Дмитриев В.Н. Прикладная теория информации. М: Высшая школа,1989.
2. Колмогоров А.Н. Теория информации и теория алгоритмов.М:Наука,1987.
3. Колмогоров А.Н. Три подхода к определению понятия “количество информации” // Проблемы передачи информации. 1965. Т.1. №1.
4. Поплавский Р.П. Депон Максвелла и соотношения между информацией и энтропией // УФН. 1979. Т. 128. Вып. 1.
5. Хартли Р. Передача информации// Теория информации и ее приложения. М.: Физматгиз. 1959.
6. Шамбадаль П. Развитие и приложения понятия энтропии. М.: Наука, 1967.
7. Яглом А.М., Яглом И.М. Вероятность и информация. М.: Наука, 1973.