Определение, обозначения и типы матриц




Определитель произведения прямоугольных матриц. Теорема Коши-Бине.

Курсовая работа

Выполнила студентка II курса группы ПМИ Решоткина Наталья Николаевна

Мурманский Государственный Педагогический Университет

Мурманск 2007

Введение

При решении различных задач математики очень часто приходится иметь дело с таблицами чисел, называемых матрицами. С помощью матриц удобно решать системы линейных уравнений, выполнять многие операции с векторами, решать различные задачи компьютерной графики и другие инженерные задачи.

Цель данной работы: теоретическое обоснование и необходимость практического применения теоремы Коши-Бине:

Пусть , - и -матрицы соответственно, и

Тогда

Другими словами, при определитель матрицы является суммой произведений всевозможных миноров порядка в на соответствующие миноры матрицы того же самого порядка

Работа состоит из четырех глав, содержит заключение, список литературы и приложение программы для теоремы Коши-Бине. В главе I рассматриваются элементы линейной алгебры – матрицы, операции над матрицами и свойства сложения матриц, и умножения на скаляр. Глава II посвящается умножению матриц и его свойств, а также транспонирование произведения двух матриц. В главе III рассматриваются обратимые и элементарные матрицы. В главе IV вводиться понятие определителя квадратной матрицы, рассматриваются свойства и теоремы об определителях, а также приводится доказательство теоремы Коши-Бине, что является целью моей работы. В дополнение прилагается программа показывающая механизм нахождения определителя произведения двух матриц.

Глава I

Определение, обозначения и типы матриц

Мы определяем матрицу как прямоугольную таблицу чисел:

Где элементы матрицы aij (1≤i≤m, 1≤j≤n)-числа из поля .Для наших целей поле будет либо множеством всех вещественных чисел, либо множеством всех комплексных. Размер матрицы , где m-число строк, n-число столбцов. Если m=n, то говорят, что матрица квадратная, порядка n. В общем случаем матрица называется прямоугольной.

Каждой матрице с элементами aij соответствует n×m матрица с элементами aji. Она называется транспонированной к и обозначается через . Видно, что = . Строки матрицы становятся столбцами в и столбцы матрицы становятся строками в .

Матрица называется нулевой если все элементы равны 0:

Матрица называется треугольной если все ее элементы, расположенные ниже главной диагонали равны 0

Треугольная матрица называется диагональной, если все элементы расположенные вне главной диагонали равны 0

Диагональной матрица называется единичной, если все элементы расположенные на главной диагонали равны 1

Матрица, составленная из элементов, находящихся на пересечении нескольких выбранных строк матрицы и нескольких выбранных столбцов, называется субматрицей для матрицы . Если -номера выбранных строк и -номера выбранных столбцов, то субматрица это

В частности, строки и столбцы матрицы можно рассматривать как ее субматрицы.

§2 Операции над матрицами

Определим следующие операции:

Сумма двух матриц , и с элементами и есть матрица С с элементами , запишем это как

Произведение матрицы на число поля есть матрица С с элементами , запишем как .

Произведение матрицы на матрицу есть матрица С с элементами , запишем

поле скаляров, рассмотрим , где элемент матрицы , расположенный в -строке , -столбце . Размерность матрицы .Если , то -квадратная матрица порядка . Множество -это множество всех матриц над полем .

Опр. Две матрицы равны, если они имеют одинаковую размерность и на одинаковых местах расположены одинаковые элементы. Другими словами: равна матрице , т.е

Опр. Пусть -это матрицы одинаковой размерности . Суммой матриц и называется матрица у которой в строке, столбце расположен элемент , т.е. . Другими словами: Чтобы сложить две матрицы нужно сложить соответствующие элементы:

Пример:

Опр. Пусть , , . Произведение скаляра на матрицу называется у которой в строке, столбце расположен элемент . Другими словами: Чтобы скаляр умножить на матрицу нужно все элементы матрицы умножить на скаляр .

Определение. Противоположной к матрице называется матрица

Свойства сложения и умножения матриц на скаляры:

-абелева группа

1) Сложение матриц ассоциативно и коммутативно.

2)

3)

а)

б)

4)

Глава II

Умножение матриц

,

,

Опр. Произведением матрицы на матрицу называется матрица . , где

, где

Говорят, что есть скалярное произведение -строки матрицы на -столбец матрицы .

, где

Пример:

§2 Свойства умножения матриц

Умножение матриц ассоциативно:

1) , если определены произведения матриц и

Доказательство:

Пусть , так как определено , то и определено , то

Определим матрицы:

а)

б)

(1) матрицы, тогда имеют одинаковую размерность

2) Покажем, что на одинаковых местах в матрицах расположены одинаковые элементы

из равенства (1) (2), (3). Подставляя (3) в (2) получим:

, тогда (4), (5). Подставляя (5) в (4) получим:

Вывод: Матрицы имеют одинаковую размерность и на одинаковых местах расположены одинаковые элементы.

Умножение матриц дистрибутивно :

Доказательство:

так как определено , то и определено , то

размерности

размерности

Матрицы имеют одинаковую размерность, покажем расположение одинаковых элементов:

,

,

Вывод: На одинаковых местах расположены одинаковые элементы.

3. , . Если определены матрицы, то доказательство проводим аналогично свойству 2.

4. , : , если определена матрица

Доказательство:

. Пусть ,

, ,

5. Умножение матриц в общем случае не коммутативно. Рассмотрим это на примере:

, тогда

§3 Техника матричного умножения

поле скаляров, ,

Свойства:

Произведение можно рассматривать, как результат умножения столбцов матрицы на слева и как результат умножения строк матрицы на справа.

Пусть матрица , -линейная комбинация столбцов матрицы коэффициенты которой служат элементы матрицы

Пример

Пусть -матрица , тогда -линейная комбинация строк матрицы коэффициенты которой служат элементы матрицы

Пример:

Столбцы матрицы -линейная комбинация столбцов матрицы . Строки -линейная комбинация строк матрицы .

§4 Транспонирование произведения матриц

поле скаляров, , , ,

Теорема

если , то . Обозначим: ,

Доказательство:

1) Пусть ,

- размерности , - размерности , тогда и имеют одинаковую размерность

2) , -элемента расположенный в -строке, -столбце матрицы т.е

, -произведение -строки транспонированной на столбец ,

Глава III

Обратимые матрицы

поле скаляров, множество матриц порядка

Определение. Квадратная матрица порядка называется единичной матрицей ,

Пусть ,

Теорема 1

, то для выполняется

Доказательство:

Из этого следует . Матрица является единичной матрицей. Она выполняет роль единицы при умножении матриц.

Определение. Квадратная матрица называется обратимой если существует так, что выполняются условия

Матрица называется обратной к и обозначается , тогда если -это обратная к , то обратная к -это взаимообратные матрицы т.е.

Теорема 2

Если -обратима, то существует только одна матрица обратная к

Доказательство:

Пусть дана матрица , которая обратима и пусть существуют матрицы обратные к т.е. . Имеем

Обозначение: Множество всех обратимых матриц порядка над полем обозначается

Теорема 3

Справедливы утверждения:

1) алгебра

2) группа

Доказательство:

1) -это бинарная операция

а) Пусть , так как -обратимые матрицы, проверим, что -это бинарная операция:

обратные к

Аналогично: , обратимая матрица т.е -это бинарная операция

б) , матрица обратима, поэтому -это унарная операция

в) обратима т.е

2) Докажем второе утверждение, что группа. Для этого проверим аксиомы групп:

1)

2)

3)

группа

Следствие:

Произведение обратимых матриц есть обратимая матрица

Если обратима, то обратима

§2 Элементарные матрицы

Пусть поле скаляров

Определение.Элементарной матрицей называется матрица, полученная из единичной матрицы в результате одного из следующих элементарных преобразований:

Умножение строки (столбца) на скаляр

Прибавление к какой либо строке (столбцу) другой строки (столбца), умноженный на скаляр

Обозначение: -элементарная матрица, полученная умножением на -строки (столбца) матрицы

-строка

-элементарная матрица, полученная прибавлением к -строке (столбцу) матрицы -строки (столбца), умноженной на

-строка

Пример: Элементарные матрицы порядка 2

, , , ,

Обозначение: -элементарная матрица, полученная из единичной матрицы с помощью элементарного преобразования

Глава IV

Определители

Определитель матрицы обозначается . Другими словами определитель матрицы -это сумма произведений из множества умноженная на знак, соответствующей подстановки.

Пример

Определитель второго порядка равен произведению элементов главной диагонали вычесть произведение элементов на побоичной.

Для

Получили правило треугольника:

§2 Простейшие свойства определителей

Определитель матрицы с нулевой строкой (столбцом) равен нулю

Определитель треугольной матрицы равен произведению элементов, расположенных на главной диагонали

-это треугольная матрица если элементы под главной диагональю равны нулю.

Определитель диагональной матрицы равен произведению элементов, расположенных на главной диагонали. Матрица диагональная если все элементы, расположенные вне главной диагонали равны нулю.

§3 Основные свойства определителей

поле скаляров,

1)

Доказательство:

, обозначим . Если «пробегает» все множество , то тоже «пробегает» все т.е.

При перестановке двух столбцов (строк) матрицы ее определитель изменит знак.

Доказательство:

I) Перестановка столбцов:

Пусть - это матрица, полученная из перестановкой двух столбцов с номерами , где . Рассмотрим транспозицию:

, транспозиция является нечетной подстановкой , ,

В доказательстве будем использовать равенство:

Если пробегает все множество значений , то тоже пробегает все значения и

II) Перестановка строк

Пусть получена из перестановкой двух строк, тогда получена из перестановкой двух столбцов, тогда

III) Определитель матрицы, имеющий две одинаковые строки (столбца) равных нулю

Доказательство:

Проведем для такого поля , где

Замечание

Доказательство для случая найди в учебнике Куликовой Алгебра и теория чисел

Пусть в есть две одинаковые строки с номерами и , где , поменяем местами строки и , получим матрицу

(по св.2)

и , тогда

Если у два одинаковых столбца, то у транспонированной матрицы две одинаковые строки

IV) Если все элементы какой-либо строки (столбца) матрицы умножить на , то определитель умножиться на

Доказательство:

Пусть получена из умножением на строки

так как , то

Аналогичное доказательство для столбцов

V) Определитель матрицы у которой две строки (столбца) пропорциональны равны нулю

Доказательство:

Пусть в матрице , строки пропорциональны т.е -строка равна произведению на -строку. Пусть

Для столбцов:

Пусть получена из , . Столбцы и пропорциональны и

VI) Если каждый элемент -строки(столбца) квадратной матрицы есть сумма двух элементов, то определитель равен сумме двух определителей. В матрице первого определителя в - строке (столбце), записаны первые слагаемые, а в матрице второго определителя вторые слагаемые. Остальные элементы матриц этих определителей такие же как у матрицы

Доказательство:

VII) Ели к какой либо строке (столбцу) матрице определителя прибавить другую строку (столбец), умноженный на , то определитель неизменится.

Доказательство:

Для столбцов анологично.

VIII) Если какая либо строка (столбец) матрицы является линейной комбинацией других строк (столбцов) , то определитель

Доказательство:

Если какая то строка линейная комбинация других строк, то к ней можно прибавить другие строки, умноженные на скаляры так, чтобы получилась нулевая строка. Определитель такой матрицы равен нулю.

Пример:

(сначала умножаем первую строку на -2 и складываем со второй, затем на -3 и складываем с третей). Такое правило приведения к треугольному виду используется для определителей - порядка:

так как определитель треугольной матрицы равен произведению элементов расположенных на главной диагонали.

Если квадратная матрица является произведением некоторых матриц (которые могут быть прямоугольными), то часто бывает важно иметь возможность выразить определитель произведения в терминах свойств множителей. Следующая теорема –мощный показатель этого.

§4 Миноры и алгебраические дополнения.

Теоремы об определителях.

поле скаляров,

Опр. Минор элемента определителя порядка - определитель порядка , полученный из вычеркиванием -строки и -столбца.

Главные миноры определителя

Для главные миноры есть определители

, , …, ,

Пример:

Рассмотрим матрицу и вычислим ее миноры : , ,

Определение. Алгебраическим дополнением элемента обозначается называется число

Пример: Вычислим , ,

Лемма 1



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-07-23 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: