Асимптоты графика функции




Исследование функций с помощью производной

Возрастание и убывание функции. Экстремумы

Теорема (необходимое условие возрастания функции) Если функция f(x) дифференцируема на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке неотрицательна, т.е. f¢(x) ³ 0.

Теорема (достаточное условие возрастания функции) Если функция f(x) дифференцируема и на интервале (a; b) производная данной функции f′(x) положительна, то функция возрастает на этом интервале.

 

Теорема (необходимое условие убывания функции) Если функция f(x) дифференцируема на отрезке [a, b] и возрастает на этом отрезке, то ее производная на этом отрезке неположительна, т.е. f¢(x) £ 0.

Теорема (достаточное условие убывания функции Если функция f(x) дифференцируема и на интервале (a; b) производная данной функции f′(x) отрицательна, то функция убывает на этом интервале.

 

Точка х0 из области определения функции называется точкой максимума этой функции, если существует такая окрестность точки х0, что для всех х ≠ х0 из этой окрестности выполняется неравенство f(x) < f(x0).

 

Точка х0 из области определения функции называется точкой минимума этой функции, если существует такая окрестность точки х0, что для всех х ≠ х0 из этой окрестности выполняется неравенство f(x) > f(x0).

Теорема (необходимое условие существования экстремума) Если функция f(x) дифференцируема в точке х = х0 иточка х0 является точкой экстремума, то производная функции обращается в нуль в этой точке.

 

Теорема (I достаточное условие существования экстремума). Пусть функция f(x) дифференцируема в некоторой окрестности точки x0 и непрерывна в самой точке x0 .

Если при переходе через точку x0 производная f′(x) меняет знак с минуса на плюс, то точка x0 является точкой минимума.

Если при переходе через точку x0 производная f′(x) меняет знак с плюса на минус, то точка x0 является точкой максимума.

Если при переходе через точку x0 производная f′(x) не меняет знак, то точка x0 не является экстремумом.

 

Теорема (II достаточное условие существования экстремума) Пусть функция f(x) дважды дифференцируема в некоторой окрестности точки x0 и непрерывна в самой точке x0 , причем f¢(x0) = 0, а f¢¢(x0) ≠ 0, тогда функция f(x) в точке х = х0 имеет максимум, если f¢¢(x0)<0 и минимум, если f¢¢(x0)>0.

 

Критическими точками I рода функции называются точки, в которых первая производная функции равна нулю или не существует.

Выпуклость, вогнутость графика функции. Точки перегиба.

График функции f(x) называется выпуклым на интервале (a; b), если он расположен ниже касательной, проведенной к любой его точке.

График функции f(x) называется вогнутым на интервале (a; b), если он расположен выше касательной, проведенной к любой его точке.

Теорема (достаточное условие выпуклости, вогнутости графика функции). Если функция y = f(x) имеет на интервале (a; b) вторую производную f′′(x) и она положительна, то функция вогнута на этом интервале. Если же f′′(x) отрицательна на интервале (a; b), то функция выпукла на этом интервале.

 

Точка графика функции при переходе через которую кривая меняет направление выпуклости, называется точкой перегиба.

Теорема (достаточное условие существования точки перегиба) Если функция y = f(x) имеет на интервале (a; b) вторую производную f′′(x) и при переходе через точку х = x0 f¢¢(x) меняет знак, то точка кривой с абсциссой х = x0 является точкой перегиба.

 

Критическими точками II рода функции называются точки, в которых вторая производная функции равна нулю или не существует.

 

Асимптоты графика функции

При исследовании функций часто бывает, что при удалении координаты х точки кривой в бесконечность кривая неограниченно приближается к некоторой прямой.

 

Асимптотой кривой называется прямая, к которой неограниченно приближается график функции.

Следует отметить, что не любая кривая имеет асимптоту. Асимптоты могут быть прямые и наклонные. Исследование функций на наличие асимптот имеет большое значение и позволяет более точно определить характер функции и поведение графика кривой.

Различают три вида асимптот: вертикальные, горизонтальные и наклонные.

Вертикальные асимптоты. Если , , или , то прямая х = а является вертикальной асимптотой кривой y = f(x). Вертикальные асимптоты обычно сопровождают точки разрыва второго рода и если функция непрерывна, то вертикальных асимптот нет.

 

Например, для функции прямая х = 5 является вертикальной асимптотой.

 

Наклонные асимптоты. Предположим, что кривая y = f(x) имеет наклонную асимптоту y = kx + b.

Для точного определения этой прямой необходимо найти способ вычисления коэффициентов k и b.

 

 

Отметим, что горизонтальные асимптоты являются частным случаем наклонных асимптот при k =0.

Пример. Найти асимптоты и построить график функции .

1) Вертикальные асимптоты: y ®+¥при x ®0-0, y ®-¥ при x ®0+0, следовательно, прямая х = 0 является вертикальной асимптотой.

 

2) Наклонные асимптоты:

Таким образом, прямая у = х + 2 является наклонной асимптотой.

Пример. Найти асимптоты и построить график функции .

 

Прямые х = 3 и х = -3 являются вертикальными асимптотами кривой.

 

Найдем наклонные асимптоты: ,

Следовательно, y = 0 – горизонтальная асимптота.

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2021-01-23 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: