Основные требования и допущения




 

Физико-топологические модели должны:

 

1) просто и гибко учитывать топологию элементов БИС, в частности функционально-интегрированных (ФИЭ);

 

2) учйтывать в интегральной форме наиболее существенные физические процессы, олределяющие функционирование элементов БИС;

 

3) допускать стыковку по входам и выходам с электрическими эквивалентными системами, имитирующими условия работы элементов в составе БИС;

 

4) предполагать возможность моделирования фрагментов БИС с различной степенью приближения. Остановимся на каждом из перечисленных требований более подробно. Из первого требования следует, что модель должна быть в общем случае двумерной как для токов основных, так и неосновных носителей заряда в полупроводнике. При этом получается слишком громоздкая для практического проектирования модель.

 

Однако специфика архитектуры ФИЭ позволяет упростить задачу, ограничившись учетом двумерного характера токов только основных носителей заряда. Второе требование необходимо учитывать по следующим причинам. Во-первых, теоретически не представляется возможным разделить влияние на электрические параметры собственных конструктивных элементов и параметров окружающих элементов БИС. Во-вторых, общепризнанным является имитация условий работы

ФИЭ в составе БИС с помощью элементов электрических эквивалентных схем. Интегральный учет сложных физических процессов представляется практически единственным способом использования для проектирования полученных во время исследований экспериментальных данных и теоретических зависимостей. Именно такой подход позволит, не углубляясь в физику процессов, учесть их влияние на электрические параметры. Кроме того, возможность представления различных областей. в модели с произвольной степенью приближения практически необходима из экономических соображений. Отражая процессы, происходящие в плоскости, параллельной рабочей поверхности БИС, в то же время модель должна учитывать конкретный технологический процесс, характеризующийся определенными профилями примесей. В pазpабатываемой модели должны учитываться вре физические процессы, имеющие место в pеальной стpуктуре пpи различных pежимах работы. Эта задача может быть оптимально решена только в том случае, когда природа конкретного эффекта не будет идентифицироваться, а его реальное проявление, которое зависит от технологического процесса, будет вместе с другими существенными в этом режиме эффектами учтено в аппроксимациях соответствующих параметров. Эти параметры должны быть получены экспериментально или с помощью машинного эксперимента. Недостаток такого <не физичного> подхода заключается в возможной избыточности параметров модели, описывающих этот эффект. Неоспоримым его преимуществом при данной постановке задачи является универсальностъ и достаточная точность отображения любого сочетания классических (Эрли, Вебстера, Кирка и т. п.) и неклассических эффектов (прозрачность эмиттера, вытеснение тока к периферии эмиттера и т. п.) в реальной структуре при любом вырождении областей полупроводниковой структуры и уровне инжекции. Таким образом, разрабатываемая модель должна позволять моделировать основные биполярные структуры на основе единого подхода, т. е. изменение топологии не должно вызывать изменения самой модели и должно отражаться лишь в пересчете каких-либо ее параметров, отражающих новые границы. В этом смысле модель должна быть инвариантна (неизменна) относительно топологии, Методы определения параметров модели должны быть по возможности экономичными (ограниченное число тестовых структур) и полными, т. е. позволяк)щими рассчитать все необходимые параметры модели для любых вариантов топологии. Поэтому синтез модели удобно начать с рассмотрения электрофизических характеристик основных конструктивных компонентов общих для всех планарных биполярных функционально-и нтегрированных полупроводниковых структур. Анализ показывает, что независимо от схемотехнической организации можно выделить ряд основных конструктивных компонентов, общих для большинства функционально-интегрированных биполярных структур и достаточных для их построения.

Этими основными компонентами являются:

 

а) выпрямляющие р-n-переходы (или переходы типа Шотки), имеющие активные (инжектирующие, коллектирующие или совмещающие эти функции) и пассивные участки;

 

б) активные полупроводниковые области, в которых происходят генерация, рекомбинация, дрейф, диффузия неосновных и дрейф основных носителей заряда;

 

в) пассивные полупроводниковые области, в которых осуествляется дрейф основных носителей заряда;

 

г) полэлектродные области (области омических контактов).

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: