Технология беспроводной передачи данных ZigBee




 

 

Технология беспроводной передачи данных ZigBee была представлена на рынке уже после появления технологий беспроводной передачи данных BlueTooth и Wi-Fi. Появление технологии ZigBee обусловлено, прежде всего, тем, что для некоторых приложений (например, для удаленного управления освещением или гаражными воротами, либо считывания информации с датчиков) основными критериями при выборе технологии беспроводной передачи является малое энергопотребление аппаратной части и ее низкая стоимость. Из этого следует малая пропускная способность, так как в большинстве случаев электропитание датчиков осуществляется от встроенной батареи, время работы от которой должно превышать несколько месяцев и даже лет. Иначе ежемесячная замена батареи для датчика открывания-закрывания гаражных ворот кардинально изменит отношение пользователя к беспроводным технологиям. Существующие на тот момент времени технологии беспроводной передачи данных BlueTooth и Wi-Fi не соответствовали этим критериям, обеспечивая передачу данных на высоких скоростях, с высоким уровнем энергопотребления и стоимости аппаратной части. В 2001 году рабочей группой № 4 IEEE 802.15 были начаты работы по созданию нового стандарта, который бы соответствовал следующим требованиям:

· очень малое энергопотребление аппаратной части, реализующей технологию беспроводной передачи данных (время работы от батареи должно составлять от нескольких месяцев до нескольких лет);

· передача информации должна осуществляться на не высокой скорости;

· низкая стоимость аппаратной части.

Результатом стала разработка стандарта IEEE 802.15.4. Во многих публикациях под стандартом IEEE 802.15.4 понимают технологию ZigBee и наоборот под ZigBee — стандарт IEEE 802.15.4. Однако это не так. На рис. 5 приведена модель взаимодействия стандарта IEEE 802.15.4, технологии беспроводной передачи данных ZigBee и конечного пользователя.

Рис. 5. Модель взаимодействия стандарта IEEE 802.15.4, технологии беспроводной передачи данных ZigBee и конечного пользователя

Стандарт IEEE 802.15.4 определяет взаимодействие только двух низших уровней модели взаимодействия: физического уровня (PHY) и уровня управления доступом к радиоканалу для трех нелицензируемых диапазонов частот: 2,4 ГГц, 868 МГц и 915 МГц. В таблице 2 приведены основные характеристики оборудования, функционирующего в этих диапазонах частот.

Таблица 2. Основные характеристики оборудования

Уровень MAC отвечает за управление доступом к радиоканалу с использованием метода множественного доступа с опознаванием несущей и устранением коллизий (Carrier Sense Multiple Access with Collision Avoidance, CSMA-CA), а также за управление подключением и отключением от сети передачи данных и обеспечение защиты передаваемой информации симметричным ключом (AES-128).

В свою очередь, технология беспроводной передачи данных ZigBee, предложенная альянсом ZigBee, определяет остальные уровни модели взаимодействия, к которым относят сетевой уровень, уровень безопасности, уровень структуры приложения и уровень профиля приложения. Сетевой уровень, технологии беспроводной передачи данных ZigBee, отвечает за обнаружение устройств и конфигурацию сети и поддерживает три варианта топологии сети, приведенные на рис. 6.

Рис. 6. Три варианта топологии сети

Для обеспечения низкой стоимости интеграции технологии беспроводной передачи ZigBee в различные приложения физическая реализация аппаратной части стандарта IEEE 802.15.4 выполняется в двух исполнениях: устройства с ограниченным набором функции (RFD) и полностью функциональные устройства (FFD). При реализации одной из топологий сети, приведенной на рис. 6, требуется наличие, по крайней мере, одного FFD-устройства, выполняющего роль сетевого координатора. В таблице 3 приведен перечень функций, выполняемых устройствами FFD и RFD.

Таблица 3. Перечень функций, выполняемых устройствами FFD и RFD

Низкая стоимость аппаратной части RFD-устройств обеспечивается за счет ограничения набора функций при организации взаимодействия с сетевым координатором или FFD-устройством. Это в свою очередь, отражается на неполной реализации модели взаимодействия, приведенной на рис. 5, а также предъявляет минимальные требования к ресурсам памяти.

Кроме деления устройств на RFD и FFD, альянсом ZigBee определены три типа логических устройств: ZigBee-координатор (согласующее устройство), ZigBee-маршрутизатор и оконечное устройство ZigBee. Координатор осуществляет инициализацию сети, управление узлами, а также хранит информацию о настройках каждого узла, подсоединенного к сети. ZigBee-маршрутизатор отвечает за маршрутизацию сообщений, передаваемых по сети от одного узла к другому. Под оконечным устройством понимают любое оконечное устройство, подсоединенное к сети. Рассмотренные выше устройства RFD и FFD как раз и являются оконечными устройствами. Тип логического устройства при построении сети определяет конечный пользователь посредством выбора определенного профиля (рис. 5), предложенного альянсом ZigBee. При построении сети с топологией «каждый с каждым» передача сообщений от одного узла сети к другому может осуществляться по разным маршрутам, что позволяет строить распределенные сети (объединяющие несколько небольших сетей в одну большую — кластерное дерево) с установкой одного узла от другого на достаточно большом расстоянии и обеспечить надежную доставку сообщений.

Трафик, передаваемый по сети ZigBee, как правило, разделяют на периодический, прерывистый и повторяющийся (характеризующийся небольшим временным интервалом между посылками информационных сообщений).

Периодический трафик характерен для приложений, в которых необходимо дистанционно получать информацию, например от беспроводных сенсорных датчиков или счетчиков. В таких приложениях получение информации от датчиков или счетчиков осуществляется следующим образом. Как уже упоминалось ранее, любое оконечное устройство, в качестве которого в данном примере выступает беспроводной датчик, подавляющую часть времени работы должно находится в режиме «засыпания», обеспечивая тем самым очень низкое энергопотребление. Для передачи информации оконечное устройство в определенные моменты времени выходит из режима «засыпания» и выполняет поиск в радиоэфире специального сигнала (маяка), передаваемого устройством управления сетью (ZigBee-координатором или ZigBee-маршрутизатором), к которой подсоединен беспроводной счетчик. При наличии в радиоэфире специального сигнала (маяка) оконечное устройство осуществляет передачу информации устройству управления сетью и сразу же переходит в режим «засыпания» до следующего сеанса связи.

Прерывистый трафик свойственен, например, для устройств дистанционного управления освещением. Представим ситуацию, когда необходимо при срабатывании датчика движения, установленного у входной двери, передать команду на включение освещения в прихожей. Передача команды в данном случае осуществляется следующим образом. При получении устройством управления сетью сигнала о срабатывании датчика движения оно выдает команду оконечному устройству (беспроводному выключателю) подключиться к беспроводной сети ZigBee. Затем устанавливается соединение с оконечным устройством (беспроводным выключателем) и выполняется передача информационного сообщения, содержащего команду на включение освещения. После приема команды соединение разрывается и выполняется отключение беспроводного выключателя от сети ZigBee.

Подключение и отключение оконечного устройства к сети ZigBee только в необходимые для этого моменты позволяет существенно увеличить время пребывания оконечного устройства в режиме «засыпания», обеспечивая тем самым минимальное энергопотребление. Метод использования специального сигнала (маяка) является гораздо более энергоемким.

В некоторых приложениях, например охранных системах, передача информации о срабатывании датчиков должна осуществляться практически мгновенно и без задержек. Но надо учитывать тот факт, что в определенный момент времени могут «сработать» сразу несколько датчиков, генерируя в сети так называемый повторяющийся трафик. Вероятность данного события невелика, но не учитывать его в охранных системах недопустимо. В беспроводной сети ZigBee для сообщений, передаваемых в беспроводную сеть при срабатывании сразу нескольких охранных датчиков (оконечных устройств), предусмотрена передача данных от каждого датчика в специально выделенном временном слоте. В технологии ZigBee специально выделяемый временной слот называют гарантированным временным слотом (Guaranteed Time Slot, GTS). Наличие в технологии ZigBee возможности предоставлять гарантированный временной слот для передачи неотложных сообщений позволяет говорить о реализации в ZigBee метода QoS (качество обслуживания). Выделение гарантированного временного слота для передачи неотложных сообщений осуществляется сетевым координатором (рис. 6, PAN Coordinator).

При разработке аппаратной части технологии беспроводной передачи данных ZigBee, реализующей модель взаимодействия, практически все производители придерживаются концепции, в соответствии с которой вся аппаратная часть размещается на одном чипе. На рис. 7 приведена концепция исполнения аппаратной части технологии беспроводной передачи данных ZigBee.

Рис. 7. Концепция исполнения аппаратной части технологии беспроводной передачи данных ZigBee

Для построения беспроводной сети (например, сеть с топологией «звезда») на основе технологии ZigBee разработчику необходимо приобрести по крайней мере один сетевой координатор и необходимое количество оконечных устройств. При планировании сети следует учитывать, что максимальное количество активных оконечных устройств, подсоединенных к сетевому координатору, не должно превышать 240. Кроме того, необходимо приобрести у производителя ZigBee-чипов программные средства для разработки, конфигурирования сети и создания пользовательских приложений и профилей. Практически все производители ZigBee-чипов предлагают на рынке целую линейку продукции, отличающейся, как правило, только объемом памяти ROM и RAM. Например, чип со 128 Кбайт ROM и 8 Кбайт RAM может быть запрограммирован на работу в качестве координатора, маршрутизатора и оконечного устройства.

Высокая стоимость отладочного комплекта, в состав которого входит набор программных и аппаратных средств для построения беспроводных сетей ZigBee любой сложности, является одним из сдерживающих факторов массового распространения технологии ZigBee на рынке России. Необходимо отметить, что появление технологии беспроводной передачи ZigBee стало определенным ответом на потребности рынка создания интеллектуальных систем управления частными домами и строениями, спрос на которые с каждым годом увеличивается. Уже в ближайшем будущем частные дома и строения будут оснащены огромным количеством беспроводных сетевых узлов, осуществляющих мониторинг и управление системами жизнеобеспечения дома. Инсталляция данных систем может быть произведена в любое время и за короткие сроки, так как не требует разводки в здании кабелей.

Перечислим приложения, в которые может быть интегрирована технология ZigBee:

· Системы автоматизации жизнеобеспечения домов и строений (удаленное управление сетевыми розетками, выключателями, реостатами и т. д.).

· Системы управления бытовой электроникой.

· Системы автоматического снятия показаний с различных счетчиков (газа, воды, электричества и т. д.).

· Системы безопасности (датчики задымления, датчики доступа и охраны, датчики утечки газа, воды, датчики движения и т. д.).

· Системы мониторинга окружающей среды (датчики температуры, давления, влажности, вибрации и т. д.).

· Системы промышленной автоматизации.

 

Заключение

 

· Приведенный в статье краткий обзор технологий беспроводной передачи данных BlueTooth, Wi-Fi и ZigBee показывает, что даже для имеющих опыт разработчиков бывает затруднительно однозначно отдать предпочтение той или иной технологии только на основании технической документации.

· Поэтому подход к выбору должен основываться на комплексном анализе нескольких параметров. Сравнительные характеристики технологий BlueTooth, Wi-Fi и ZigBee приведены в таблице 4. Эта информация поможет принять правильное решение при выборе технологии беспроводной передачи данных.

Таблица 4. Сравнительные характеристики технологий BlueTooth, Wi-Fi и ZigBee

Литература

 

В.А. Григорьев, О.И. Лагутенко, Ю.А. Распаев. «Системы и сети радиодоступа», М.,:ЭкоТрендз, 2005 г.

www.ieee.com

www.chipcon.com

www.ember.com

www.BlueTooth.org

https://www.wireless-e.ru/articles/bluetooth/2006_1_10.php

 

 



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-10-25 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: