Спиральная структура ДНК




С помощью физико-химических, электронно-микроскопических и рентгеноструктурных методов показано, что большинство молекул ДНК представляют собой протяженные, гибкие, нитевидные структуры. Этими же методами установлено, что молекула ДНК имеет почти постоянный диаметр и состоит из регулярно расположенных повторяющихся звеньев, причем ее структура не зависит от нуклеотидного состава. Таким образом, в отличие от белков, двух - и трехмерная структура которых обязательно зависит от состава и порядка расположения аминокислот, молекула ДНК в обычных условиях при любом нуклеотидном составе и порядке расположения четырех нуклеотидов представляет собой абсолютно регулярную практически идентичную по всей длине структуру. Такие в какой-то степени парадоксальные химические и физические свойства ДНК порождаются особенностями ее структуры.

Молекула ДНК обычно находится в форме двойной спирали, образуемой двумя полинуклеотидными цепями, обвивающимися одна вокруг другой. Два дезоксирибозофосфатных остова, расположенные по периферии молекулы, имеют антипараллельную ориентацию. В наиболее часто встречающейся структурной форме пуриновые и пиримидиновые основания в каждой цепи уложены в стопки с интервалом 0,34 нм и направлены внутрь спирали; плоскости колец примерно перпендикулярны оптической оси спирали. Спираль делает полный оборот каждые 3,4 нм, т.е. через каждые 10 оснований. На наружной ее поверхности имеются два желобка - большой и малый.

Азотистые основания четырех нуклеотидов ДНК не находятся между собой в количественном соотношении 1:1. Напротив, молярные отношения двух пуринов, А и G, и двух пиримидинов, Т и G, различны для ДНК разных организмов. В то же время соотношение между пуринами и пиримидинами постоянно и не зависит от источника ДНК, а именно: содержание пуриновых нуклеотидов всегда равно содержанию пиримидиновых нуклеотидов; число А равно числу Т, и аналогично для G и С. Эти факты и легли в основу предположения, что пуриновые и пиримидиновые нуклеотиды в ДНК спарены, а двойная спираль стабилизируется с помощью водородных связей между пуринами одной цепи ДНК и пиримидинами другой.

 

Два указанных типа пар оснований, AT и GC, обычно называемых комплементарными парами, преобладают в большинстве ДНК. В АТ-паре основания соединены двумя водородными связями: одна из них образуется между амино-и кето-группами, а другая - между двумя атомами азота пурина и пиримидина соответственно. В GC-паре имеются три водородные связи: две из них образуются между амино- и кето-группами соответствующих оснований, а третья - между атомами азота. Образование пар между двумя пуринами, двумя пиримидинами или некомплементарными основаниями стерически затруднено, поскольку при этом не могут образовываться подходящие водородные связи и, следовательно, нарушается геометрия спирали. Модифицированные пурины и пиримидины, с небольшой частотой встречающиеся в ДНК, образуют такие же водородные связи, что и их немодифицированные аналоги; тем самым правило спаривания не нарушается. Согласно этим правилам, последовательность оснований в одной цепи определяет их последовательность в другой. Комплементарность последовательности оснований в двух полинуклеотидных цепях - ключевое свойство ДНК.Дополнительная стабилизация двойной спирали обеспечивается межплоскостными взаимодействиями ароматических колец соседних оснований. Размеры комплементарных пар оснований практически одинаковы; примерно одинаковы также угол и направление связи дезоксирибоза-основание. Расстояние между соседними основаниями равно 0,34 нм, а угол, на который они повернуты друг относительно друга, - 36°. Из всех этих данных следует, что диаметр спирали постоянен, а число пар оснований на виток спирали равно 10. Точные данные о расположении, ориентации в пространстве и размерах различных составляющих ДНК были получены методом рентгеноструктурного анализа волокон ДНК.

Альтернативные формы двойной спирали ДНК Все, о чем мы говорили, касалось наиболее распространенной, так называемой В-формы двойной спирали ДНК. Известны также два других изомерных типа двойной спирали. Они образуются благодаря тому, что валентные углы между основаниями и сахаром могут меняться, а дезоксирибозное кольцо и сахарофосфатный остов достаточно гибки, чтобы могли сформироваться альтернативные конфигурации. Редко встречающаяся А-форма, существующая только при пониженной влажности, отличается от В-формы тем, что плоскости оснований составляют с перпендикуляром к оси спирали угол 20°. Поэтому расстояние между парами оснований по вертикали уменьшается до 0,29 нм, а число пар на виток увеличивается до 11-12. Какова биологическая функция А-формы ДНК-пока неясно.Характерной особенностью В-формы ДНК является то, что сахарофосфатные остовы обеих цепей образуют правую спираль. Однако при определенных условиях участки ДНК, для которых характерно чередование пуриновых и пиримидиновых нуклеотидов, принимают форму левой спирали. При этом расстояние между соседними парами оснований увеличивается до 0,77 нм, а число пар на один виток-до 12. Остов молекулы ДНК имеет зигзагообразный вид, поэтому подобная форма получила название Z-ДНК. Вопрос о том, существует ли Z-ДНК в естественных условиях и образуется ли она в определенных участках В-спирали под действием специфических белков, способных переводить В-форму в Z-форму, сейчас интенсивно исследуется.

Размер молекул ДНК Обычно размер молекулы ДНК выражается в числе пар нуклеотидов, при этом за единицу берется тысяча пар нуклеотидов. Мол. масса одной т.п. н. В-ДНК равна в среднем 6,6"105, а ее длина составляет 340 нм. Если принять все необходимые меры, чтобы не разрушить ДНК при выделении, и использовать мягкие методы измерения длины, то обнаружится удивительное соответствие между длиной молекулы ДНК и массой одной небольшой хромосомы. Так, молекулы ДНК единственных хромосом, из которых состоят геномы бактериофагов X и Т4, а также адено - и герпесвирусов, имеют длину, соответствующую числу пар оснований в одной хромосоме, составляющей геном каждого из этих вирусов. Полный геном E. coli также представлен единственной молекулой ДНК и имеет длину 1,4 мм. Есть все основания считать, что каждая из хромосом дрожжей, Drosophila и даже человека состоит из одной молекулы ДНК размером от нескольких десятков тысяч до многих миллионов пар нуклеотидов.

Разнообразие форм ДНК

Существовавшее до недавнего времени мнение о том, что В-ДНК - это совершенная двойная спираль, геометрия которой одинакова независимо от нуклеотидной последовательности, в действительности не совсем корректно. Детальный рентгеноструктурный анализ, построение моделей и термодинамические расчеты показали, что плоскости соседних пар оснований не строго параллельны. Каждая комплементарная пара оснований является как бы клином, отклоняющим ось спирали в одном или в другом направлении. Наибольший "крен" наблюдается тогда, когда два соседних аденина в одной цепи спарены с двумя тиминами другой. В этом месте происходит локальное искривление спирали. Если такие пары встречаются с периодичностью примерно один раз на 10 пар, то молекула ДНК приобретает заметно искривленную форму. Искривленная, или изогнутая, структура была, например, обнаружена в линейных фрагментах ДНК кинетопластов трипаносомы Leishmanial tarentolae по аномально малой подвижности этих фрагментов при электрофорезе в полиакриламидном геле. Изгибы в молекуле ДНК наблюдаются в тех участках последовательности, где с необычно высокой частотой встречаются повторы 5-6, разделенные GC-богатыми участками из четырех-шести нуклеотидов. Биологическая роль искривления ДНК окончательно не установлена. Предрасположенность к такому изгибанию, зависящая от последовательности оснований, может иметь значение при наматывании молекулы ДНК на гистоновые октамеры в хроматине. Возможно, изгибание ДНК существенно и при специфическом связывании ДНК с белками в процессе регуляции экспрессии генов.ДНК может находиться в линейной или кольцевой форме. Бактериальные плазмиды, хромосомы некоторых бактерий, большинство митохондриальных и хлоропластных ДНК, геномы вирусов млекопитающих представлены единственной ковалентно замкнутой кольцевой дуплексной молекулой ДНК. Хромосома бактериофага X на разных стадиях жизненного цикла существует то как линейная молекула, то как замкнутая кольцевая структура, то как кольцо с разрывами. По-видимому, никакого верхнего предела для размера кольцевой двухцепочечной молекулы ДНК не существует.ДНК в клетке обычно находится в комплексе с белками. Связанный белок слегка раскручивает спираль ДНК, соответственно и число витков спирали на единицу длины становится меньше, чем у свободной В-ДНК. При удалении белка восстанавливается обычное число правозакрученных витков спирали. В линейной молекуле ДНК это происходит достаточно легко, поскольку обе цепи свободно вращаются одна вокруг другой. В замкнутой же кольцевой молекуле общее число витков спирали топологически фиксировано, и число оборотов одной цепи вокруг другой не может быть изменено без компенсаторного образования витков противоположного знака где-нибудь в другом месте молекулы. Итак, когда естественные кольцевые дуплексы освобождаются от белков, с которыми они часто бывают связаны in vivo, происходит следующее:1) число правозакрученных витков спирали возрастает до величины, характерной для В-ДНК;2) в самом дуплексе образуется столько же витков противоположного знака, чтобы компенсировать увеличение скрученности спирали. О таких молекулах говорят, что они обладают отрицательной сверхспиральностью. При внесении одного разрыва в сверхспиральную кольцевую ДНК сверхспиральность снимается и кольцевая структура переходит в релаксированное состояние, при котором топологические ограничения отсутствуют. Любые химические или физические изменения, приводящие к уменьшению числа витков спирали на молекулу, уменьшают или вообще снимают отрицательную сверхспиральность в замкнутой кольцевой ДНК.Не все ДНК in vivo являются двухцепочечными. Геномы некоторых мелких вирусов бактерий, растений и животных представляют собой ковалентно замкнутые кольца, состоящие только из одной цепи. Все известные одноцепочечные кольцевые ДНК относительно малы: ДНК бактериофагов фХ174 и М13 содержат примерно 5300 и 6000 нуклеотидов соответственно и имеют длину 1,5-2 мкм; длина молекул ДНК парвовирусов животных и некоторых вирусов растений составляет 2/3 и 1/2 указанных величин соответственно. Однако для репликации любой из этих вирусных ДНК совершенно необходимо превращение одноцепочечного кольца в соответствующее двухцепочечное, из которого затем образуются одноцепочечные кольцевые ДНК вирусного потомства. Более того, экспрессия генетической информации в таких геномах всегда осуществляется в фазе двухцепочечной ДНК, поскольку именно она является субстратом для транскрипции последовательности ДНК в РНК.

Денатурация и ренатурация ДНК Водородные связи и межплоскостные взаимодействия, стабилизирующие двойную спираль, достаточно слабы, и при относительно небольших воздействиях происходит разделение цепей - процесс, именуемый денатурацией, или плавлением. Двухцепочечная спиральная ДНК в растворе легко разрушается при нагревании до температур, близких к 100°С. Денатурация происходит также при увеличении рН раствора до уровня, при котором разрушаются водородные связи между основаниями. Многие факторы влияют на денатурацию, нейтрализуя частично или полностью отрицательно заряженные фосфатные группы остова молекулы. Интервал значений температуры или рН, при которых происходит разделение цепей, очень невелик. Поскольку для разрушения двух водородных связей АТ-пар требуется меньше энергии, чем для разрыва трех водородных связей GС-пар, значения температуры и рН, при которых происходит денатурация, зависят от нуклеотидного состава ДНК. Чем выше содержание GС-пар, тем выше Тт или рНт.Денатурация - процесс обратимый, последующее восстановление двухцепочечной структуры ДНК может происходить даже при полном расхождении цепей. Процесс воссоединения, называемый ренатурацией, реассоциацией или отжигом, происходит при понижении температуры или рН. Если температура или рН понижаются постепенно, то цепи соединяются правильно, с восстановлением всех исходных пар оснований. При резком понижении температуры или рН правильное воссоединение комплементарных цепей затрудняется из-за спаривания оснований локально комплементарных участков в пределах одной или разных цепей. Диссоциация и реассоциация ДНК в растворе являются по сути искусственным воссозданием процессов, играющих ключевую роль в реализации разнообразных биологических функций in vivo. Очень важным для дальнейшего изложения представляется то, что способность двух отдельных комплементарных цепей нуклеиновой кислоты воссоединяться с образованием исходной структуры является ключевым моментом для проведения соответствующих опытов in vitro, а также для выделения, сравнения и идентификации специфических нуклеиновых кислот. Уникальная способность нуклеиновой кислоты образовывать двойные спирали путем ассоциации одиночных комплементарных цепей имеет огромное значение для самых разных областей генетики.

Строение и функции РНК

РНК — полимер, мономерами которой являются рибонуклеотиды. В отличие от ДНК, РНК образована не двумя, а одной полинуклеотидной цепочкой (исключение — некоторые РНК-содержащие вирусы имеют двухцепочечную РНК). Нуклеотиды РНК способны образовывать водородные связи между собой. Цепи РНК значительно короче цепей ДНК.Мономер РНК — нуклеотид (рибонуклеотид) — состоит из остатков трех веществ: 1) азотистого основания, 2) пятиуглеродного моносахарида (пентозы) и 3) фосфорной кислоты. Азотистые основания РНК также относятся к классам пиримидинов и пуринов.Пиримидиновые основания РНК — урацил, цитозин, пуриновые основания — аденин и гуанин. Моносахарид нуклеотида РНК представлен рибозой.Выделяют три вида РНК: 1) информационная (матричная) РНК — иРНК (мРНК), 2) транспортная РНК — тРНК, 3) рибосомная РНК — рРНК.Все виды РНК представляют собой неразветвленные полинуклеотиды, имеют специфическую пространственную конформацию и принимают участие в процессах синтеза белка. Информация о строении всех видов РНК хранится в ДНК. Процесс синтеза РНК на матрице ДНК называется транскрипцией.

Транспортные РНК содержат обычно 76 (от 75 до 95) нуклеотидов; молекулярная масса — 25 000–30 000. На долю тРНК приходится около 10% от общего содержания РНК в клетке.Функции тРНК: 1) транспорт аминокислот к месту синтеза белка, к рибосомам, 2) трансляционный посредник. В клетке встречается около 40 видов тРНК, каждый из них имеет характерную только для него последовательность нуклеотидов. Однако у всех тРНК имеется несколько внутримолекулярных комплементарных участков, из-за которых тРНК приобретают конформацию, напоминающую по форме лист клевера. У любой тРНК есть петля для контакта с рибосомой (1), антикодоновая петля (2), петля для контакта с ферментом (3), акцепторный стебель (4), антикодон (5). Аминокислота присоединяется к 3'-концу акцепторного стебля. Антикодон — три нуклеотида, «опознающие» кодон иРНК. Следует подчеркнуть, что конкретная тРНК может транспортировать строго определенную аминокислоту, соответствующую ее антикодону. Специфичность соединения аминокислоты и тРНК достигается благодаря свойствам фермента аминоацил-тРНК-синтетаза.

Рибосомные РНК содержат 3000–5000 нуклеотидов; молекулярная масса — 1 000 000–1 500 000. На долю рРНК приходится 80–85% от общего содержания РНК в клетке. В комплексе с рибосомными белками рРНК образует рибосомы — органоиды, осуществляющие синтез белка. В эукариотических клетках синтез рРНК происходит в ядрышках. Функции рРНК: 1) необходимый структурный компонент рибосом и, таким образом, обеспечение функционирования рибосом; 2) обеспечение взаимодействия рибосомы и тРНК; 3) первоначальное связывание рибосомы и кодона-инициатора иРНК и определение рамки считывания, 4) формирование активного центра рибосомы.Информационные РНК разнообразны по содержанию нуклеотидов и молекулярной массе (от 50 000 до 4 000 000). На долю иРНК приходится до 5% от общего содержания РНК в клетке.Функции иРНК: 1) перенос генетической информации от ДНК к рибосомам, 2) матрица для синтеза молекулы белка, 3) определение аминокислотной последовательности первичной структуры белковой молекулы.

Строение и функции АТФ

Аденозинтрифосфорная кислота (АТФ) — универсальный источник и основной аккумулятор энергии в живых клетках. АТФ содержится во всех клетках растений и животных. Количество АТФ в среднем составляет 0,04% (от сырой массы клетки), наибольшее количество АТФ (0,2–0,5%) содержится в скелетных мышцах.АТФ состоит из остатков: 1) азотистого основания (аденина), 2) моносахарида (рибозы), 3) трех фосфорных кислот. Поскольку АТФ содержит не один, а три остатка фосфорной кислоты, она относится к рибонуклеозидтрифосфатам. Для большинства видов работ, происходящих в клетках, используется энергия гидролиза АТФ. При этом при отщеплении концевого остатка фосфорной кислоты АТФ переходит в АДФ (аденозиндифосфорную кислоту), при отщеплении второго остатка фосфорной кислоты — в АМФ (аденозинмонофосфорную кислоту). Выход свободной энергии при отщеплении как концевого, так и второго остатков фосфорной кислоты составляет по 30,6 кДж. Отщепление третьей фосфатной группы сопровождается выделением только 13,8 кДж. Связи между концевым и вторым, вторым и первым остатками фосфорной кислоты называются макроэргическими (высокоэнергетическими)Запасы АТФ постоянно пополняются. В клетках всех организмов синтез АТФ происходит в процессе фосфорилирования, т.е. присоединения фосфорной кислоты к АДФ. Фосфорилирование происходит с разной интенсивностью при дыхании (митохондрии), гликолизе (цитоплазма), фотосинтезе (хлоропласты).АТФ является основным связующим звеном между процессами, сопровождающимися выделением и накоплением энергии, и процессами, протекающими с затратами энергии. Кроме этого, АТФ наряду с другими рибонуклеозидтрифосфатами (ГТФ, ЦТФ, УТФ) является субстратом для синтеза РНК.

19. Ядро. Ядро - важнейшая составная часть клетки. Оно содержит молекулы ДНК и поэтому выполняет две главные функции: 1) хранение и воспроизведение генетической информации, 2) регуляция процессов обмена веществ, протекающих в клетке. Клетка утратившая ядро, не может существовать. Ядро также неспособно к самостоятельному существованию. Большинство клеток имеет одно ядро, но можно наблюдать 2-3ядра в одной клетке, например в клетках печени. Известны многоядерные клетки с числом ядер в несколько десятков. Формы ядер зависят от формы клетки. Ядра бывают шаровидные, многолопастные. Ядро окружено оболочкой, состоящей из двух мембран, имеющих обычное трёхслойное строение. Наружная ядерная мембрана покрыта рибосомами, внутренняя мембрана гладкая. Главную роль в жизнедеятельности ядра играет обмен веществ между ядром и цитоплазмой. Содержимое ядра включает ядерный сок, или кариоплазму, хроматин и ядрышко. В состав ядерного сока входят различные белки, в том числе большинство ферментов ядра, свободные нуклеотиды, аминокислоты, продукты деятельности ядрышка и хроматина, перемещающиеся из ядра в цитоплазму. Хроматин содержит ДНК, белки и представляет собой спирализованные и уплотненные участки хромосом. Ядрышко представляет собой плотное округлое тельце, располагающееся в ядерном соке. Число ядрышек колеблется от 1 до 5-7 и более. Ядрышки есть только в неделящихся ядрах, во время митоза они исчезают, а после завершения деление образуются вновь. Ядрышко не является самостоятельным органоидом клетки, оно лишено мембраны и образуется вокруг участка хромосомы, в котором закодирована структура рРНК. В ядрышке формируются рибосомы, которые затем перемещаются в цитоплазму. Хроматином называют глыбки, гранулы и сетевидные структуры ядра, интенсивно окрашивающиеся некоторыми красителями и отличные по форме от ядрышка.

Ядро - обязательная часть клеток эукариот. Это основной регуляторный компонент клетки. Оно отвечает за хранение и передачу наследственной информации, управляет всеми обменными процессами в клетке.

Ядро состоит из:

1) ядерную оболочку (ядерную мембрану), через поры которой осуществляется обмен между ядром клетки и цитоплазмой.

2) ядерный сок, или кариоплазму,— полужидкую, слабо окрашиваемую плазматическую массу, заполняющую все ядра клетки и содержащую в себе остальные компоненты ядра;

3) хромосомы, которые в неделящемся ядре видны только с помощью специальных методов микроскопии.Совокупность хромосом клетки называется кариотипом. Хроматин на окрашенных препаратах клетки представляет собой сеть тонких тяжей (фибрилл), мелких гранул или глыбок.

4) одно или несколько сферических телец — ядрышек, являющихся специализированной частью ядра клетки и связанных с синтезом рибонуклеиновой кислоты и белков.

Ядро ограничено ядерной оболочкой, отделяющей его содержимое (кариоплазму) от цитоплазмы. Оболочка состоит из двух мембран, разделенных промежутком. Обе они пронизаны многочисленными порами, благодаря которым возможен обмен веществами между ядром и цитоплазмой. В ядре клетки у большинства эукариот находится от 1 до 7 ядрышек. С ними связаны процессы синтеза РНК и тРНК.

Основные компоненты ядра - хромосомы, образованные из молекулы ДНК и различных белков. В световом микроскопе они хорошо различимы лишь в период клеточного деления (митоза, мейоза). В неделящейся клетке хромосомы имеют вид длинных тонких нитей, распределенных по всему объему ядра.

Главные функции клеточного ядра следующие: хранение информации; передача информации в цитоплазму с помощью транскрипции, т. е. синтеза переносящей информацию и-РНК; передача информации дочерним клеткам при репликации - делении клеток и ядер, регулирует биохимические, физиологические и морфологические процессы в клетке.

20. Хромосо́мы – нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена большая часть наследственной информации и которые предназначены для её хранения, реализации и передачи

Хромосо́мы (др.-греч. χρῶμα — цвет и σῶμα — тело) — нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена большая часть наследственной информации и которые предназначены для её хранения, реализации и передачи. Хромосомы чётко различимы в световом микроскопе только в период митотического или мейотического деления клетки. Набор всех хромосом клетки, называемый кариотипом, является видоспецифичным признаком, для которого характерен относительно низкий уровень индивидуальной изменчивости.

Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия всё чаще говорят о бактериальных или вирусных хромосомах. Поэтому, по мнению Д. Е. Корякова и И. Ф. Жимулёва, более широким определением является определение хромосомы как структуры, которая содержит нуклеиновую кислоту и функция которой состоит в хранении, реализации и передаче наследственной информации. Хромосомы эукариот — это ДНК-содержащие структуры в ядре, митохондриях и пластидах. Хромосомы прокариот — это ДНК-содержащие структуры в клетке без ядра. Хромосомы вирусов — это молекула ДНК или РНК в составе капсида.

Функция хромосом заключается:

- В хранении наследственной информации. Хромосомы являются носителями генетической информации.

- В передаче наследственной информации. Наследственная информация передается путем репликации молекулы ДНК.

- В реализации наследственной информации. Благодаря воспроизводству того или иного типа и-РНК и соответственно того или иного типа белка осуществляется контроль над всеми процессами жизнедеятельности клетки и всего организма.

Правила хромосомных наборов

ХРОМОСОМНЫЙ НАБОР — совокупность хромосом, свойственная клеткам данного организма. Различают два типа X. в.: гаплоидный — в зрелых половых клетках и диплоидный — в соматических клетках. При оплодотворении объединяются два гаплоидных X. н., привносимых мужской и женской гаметами, вследствие чего образуется зигота с диплоидным X. в. При мейозе снова происходит редукция диплоидного числа хромосом вдвое и образование гамет с гаплоидным X. в. Если изменения числа хромосом не кратны основному числу, X. в. называется гетероплиидиым (напр., организмы, у которых в диплоидном X. в., отсутствует одна хромосома, называются моносомиками).

Кариоти́п — совокупность признаков (число, размеры, форма и т. д.) полного набора хромосом, присущая клеткам данного биологического вида (видовой кариотип), данного организма (индивидуальный кариотип) или линии (клона) клеток. Кариотипом иногда также называют и визуальное представление полного хромосомного набора (кариограммы).

Термин «кариотип» был введён в 1924 году советским цитологом Г. А. Левитским.

 

Определение кариотипа

Внешний вид хромосом существенно меняется в течение клеточного цикла: в течение интерфазы хромосомы локализованы в ядре, как правило, деспирализованы и труднодоступны для наблюдения, поэтому для определения кариотМорфология хромосом

Митотическая суперкомпактизация хроматина делает возможным изучение внешнего вида хромосом с помощью световой микроскопии. В первой половине митоза они состоят из двух хроматид, соединенных между собой в области первичной перетяжки (центромеры или кинетохора) особым образом организованного участка хромосомы, общего для обеих сестринских хроматид. Во второй половине митоза происходит отделение хроматид друг от друга. Из них образуются однонитчатые дочерние хромосомы, распределяющиеся между дочерними клетками.

В зависимости от места положения центромеры и длины плеч, расположенных по обе стороны от нее, различают несколько форм хромосом: равноплечие, или метацентрические (с центромерой посередине), неравноплечие, или субметацентрические (с центромерой, сдвинутой к одному из концов), палочковидные, или акроцентрические (с центромерой, расположенной практически на конце хромосомы), и точковые —очень небольшие, форму которых трудно определить (рис. 3.52). При рутинных методах окраски хромосом они различаются по форме и соотносительным размерам. При использовании методик дифференциальной окраски выявляется неодинаковая флуоресценция или распределение красителя по длине хромосомы, строго специфические для каждой отдельной хромосомы и ее гомолога

Таким образом, каждая хромосома индивидуальна не только по заключенному в ней набору генов, но и по морфологии и характеру дифференциального окрашивания.ипа используются клетки в одной из стадий их деления — метафазе митоза

2. Правило постоянства числа хромосом

Число хромосом и характерные особенности их строения - видовой признак. Это является правилом постоянства числа хромосом. Это число не зависит от высоты организации и не всегда указывает на филогенетическую родство. Например, в ядрах всех клеток лошадиной аскариды Paraascaris megalocephala univalenus находится по 2 хромосомы, у мухи-дрозофилы Drosophila melanogaster-по 8, у человека - по 46, а у речного рака Astacus fluviatalis - по 116.

Число хромосом не зависит от высоты организации, а также не всегда указывает на филогенетическое родство: одно и то же число может случаться в очень далеких форм, а у близких видов - очень отличаться. Однако, очень важно, что у представителей одного вида число хромосом в ядрах всех клеток постоянно.

3. Правило четности хромосом

Существует также правило четности хромосом, по которому число хромосом всегда парным, ибо кариотипе хромосомы объединяются в гомологические пары.

4. Правило индивидуальности хромосом

Гомологичные хромосомы одинаковые по форме и строению, расположению центромер, хромомер, других деталей строения. Негомологические хромосомы всегда имеют различия. Поэтому есть правило индивидуальности хромосом: каждая пара гомологичных хромосом характеризуется своими особенностями.

5. Правило непрерывности хромосом

Правило непрерывности хромосом: в последовательных генерациях число и индивидуальность хромосом сохраняется благодаря способности хромосом к авторепродукции во время деления клетки.

21. Изучение химической организации хромосом эукариотических клеток показало, что они состоят в основном из ДНК и белков, которые образуют нуклеопротеиновый комплекс—хроматин, получивший свое название за способность окрашиваться основными красителями.

Как было доказано многочисленными исследованиями, ДНК является материальным носителем свойств наследственности и изменчивости и заключает в себе биологическую информацию — программу развития клетки, организма, записанную с помощью особого кода. Количество ДНК в ядрах клеток организма данного вида постоянно и пропорционально их плоидности. В диплоидных соматических клетках организма ее вдвое больше, чем в гаметах. Увеличение числа хромосомных наборов в полипловдных клетках сопровождается пропорциональным увеличением количества ДНК в них.

Белки составляют значительную часть вещества хромосом. На их долю приходится около 65% массы этих структур. Все хромосомные белки разделяются на две группы: гистоны и негистоновые белки.

Гистоны представлены пятью фракциями: HI, Н2А, Н2В, НЗ, Н4. Являясь положительно заряженными основными белками, они достаточно прочно соединяются с молекулами ДНК, чем препятствуют считыванию заключенной в ней биологической информации. В этом состоит их регуляторная роль. Кроме того, эти белки выполняют структурную функцию, обеспечивая пространственную организацию ДНК в хромосомах.

Число фракций негистоновых белков превышает 100. Среди них ферменты синтеза и процессинга РНК, редупликации и репарации ДНК. Кислые белки хромосом выполняют также структурную и регуляторную роль. Помимо ДНК и белков в составе хромосом обнаруживаются также РНК, липиды, полисахариды, ионы металлов.

РНК хромосом представлена отчасти продуктами транскрипции, еще не покинувшими место синтеза. Некоторым фракциям свойственна регуляторная функция.

Регуляторная роль компонентов хромосом заключается в «запрещении» или «разрешении» списывания информации с молекулы ДНК

Длинная нитеобразная молекула ДНК — главный компонент хромосом, несущий генетическую информацию, — с обоих концов закрыта своего рода «заглушками» — теломерами. Теломеры представляют собой участки ДНК с уникальной последовательностью и защищают хромосомы от деградации.

 

 

Эухроматин, активный хроматин — участки хроматина, сохраняющие деспирализованное состояние элементарных дезоксирибонуклеопротеидных нитей (ДНП) в покоящемся ядре, т. е. в интерфазе (в отличие от других участков, сохраняющих спирализованное состояние — гетерохроматина).

Эухроматин отличается от гетерохроматина также способностью к интенсивному синтезу рибонуклеиновой кислоты (РНК) и большим содержанием негистоновых белков. В нём, помимо ДНП, имеются рибонуклеопротеидные частицы (РНП-гранулы) диаметром 200—500, которые служат для завершения созревания РНК и переноса ее в цитоплазму. Эухроматин содержит большинство структурных генов организма.

Гетерохроматин — участки хроматина, находящиеся в течение клеточного цикла в конденсированном (компактном) состоянии. Особенностью гетерохроматиновой ДНК является крайне низкая транскрибируемость

Уровни компактизации хроматина.

Сохраняя преемственность в ряду клеточных поколений, хромосомы в зависимости от периода и фазы клеточного цикла меняют свое строение. В интерфазе они образуют хроматин. При переходе клетки к митозу, особенно в метафазе, хроматин приобретает вид хорошо различимых отдельных интенсивно окрашенных телец – хромосом. Интер-фазную и метафазную формы существования хромосом расценивают как два полярных варианта их структурной организации, связанных в клеточном цикле взаимопереходами. Различают следующие уровни компактизации ДНК:

Двойная спираль ДНК представлена «голой» ДНК, не связанной с белками. Ширина двойной спирали ДНК составляет 2 нм.

1) Нуклеосомный уровень хроматина возникает при взаимодействии молекулы ДНК с молекулами белков-гистонов. Два с половиной витка двойной спирали ДНК (в146-200 пар нуклеотидов) наматываются снаружи на белковый кор, образуя нуклеосому.

Кор – это белковый октамер, состоящий из 8-ми гистоновых белков четырех типов (Н2А, Н2В, Н3, Н4). Каждый гистон представлен двумя молекулами. ДНК наматывается на кор снаружи, образуя два споловиной витка. Участок ДНК между нуклеосомами называется линкером и имеет протяженность 50-60 пар нуклеотидов. Толщина нуклеосомной фибриллы (нити) составляет 8-11 нм.

2) Нуклеомерный (хроматиновая фибрилла, или нить). Нуклеосомная структура закручива-ется, образуя суперспираль. В ее образовании принимает еще один гистоновый белок Н1, ле-жащий между нуклеосомами и связанный с линкером. К каждому линкеру присоединяется 1 молекула гистона Н1. Молекулы Н1 в комплексе с линкерами взаимодействуют между собой и вызывают суперспирализацию нуклеосомной фибриллы. В результате образуется хроматиновая фибрилла (рис. 11), толщина которой составляет 30 нм:

На нуклеомерном уровне ДНК компактизована в 40 раз. Суперспирализация происходит двумя способами. Нуклеосомная фибрилла может образовывать спираль второго порядка, которая имеет форму соленоида. При втором варианте суперспирализация 8-10 нуклеосом образуют крупную компактную структуру – нуклеомеру. В обоих случаях формируется новый уровень пространственной организации хроматина, который называют нуклеомерным уровнем. Этот уровень не допускает синтеза РНК с нуклеомерной ДНК (на нуклеомерном уровне организации хроматина транскрипция не происходит).

3) Хромомерный (петельная структура). Хроматиновая фибрилла образует петли, ко-торые сцепляются между собой с помощью особых белков – негистоновых белков, ко-торые находятся на расстоянии 20.000-80.000 пар нуклеотидов. Толщина этой структуры около 300-400 нм.

4) Хромонемный (от chroma – краска, nema – нить) уровень. Хроматин является суб-станцией, которая образует хромосомы. В простейшем случае хромосома содержит одну целостную гигантскую молекулу ДНК в комплексе с белками, т.е. фибриллу ДНП. Такая ДНП-фибрилла называется хромонемой. Хромонемный уровень образуется в результате сближения хромомеров по длине. Перед делением клетки, в S-период интерфазы, каждая хромосома, содержащая одну хромонему, удваивается и состоит из двух хромонем. Эти хромонемы соединены в определенном участке хромосомы специальной структурой – центромерой.

5) Хроматидный уровень формируется в результате укладывания хромонемы в очень компактную структуру – хроматиду, при этом хромонема образует множество дополни-тельных петель. Таким образом, хромонема складывается несколько раз, образуя тело хроматиды. Толщина хроматиды около 700 нм. В норме каждая хроматида содержит од-ну хромонему, но очень плотно упакованную. Хроматиду можно назвать нереплициро-ванной хромосомой. После репликации ДНК хромосома содержит 2 хроматиды.

6) Метафазная хромосома состоит из двух хроматид. Толщина ее составляет 1400 нм. Хроматиды соединены центромерой. При делении клетки хроматиды расходят-ся и попадают в разные дочерние клетки.

 



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2016-04-27 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: