Станции катодной защиты бывают регулируемые и нерегулируемые.




Основные принципы электрохимической защиты

Электрохимическая защита является способом противокоррозионной защиты металлических материалов, основанным на снижении скорости их коррозии путем смещения потенциала до значений, соответствующих крайне низким скоростям растворения. Сущность метода состоит в уменьшении скорости электрохимической коррозии металла при поляризации электрода от источника постоянного тока или при контакте с добавочным электродом, являющимся анодом или катодом по отношению к корродирующей системе.

 

 

Катодная защита

Катодная защита применяется в тех случаях, когда металл не склонен к пассивации, то есть имеет протяженную область активного растворения, узкую пассивную область, высокие значения критического тока (iкр) и потенциала (Екр) пассивации. Осуществление катодной защиты возможно различными способами: снижением скорости катодной реакции (например, деаэрацией растворов, в которых протекает коррозионный процесс); поляризацией от внешнего источника тока; созданием контакта с другим материалом, имеющим в рассматриваемых условиях более отрицательный потенциал свободной коррозии (протекторная защита).

Растворение любого металла протекает в форме анодного процесса. Если потенциал корродируещего объекта снижается до величины обратимого потенциала анодной реакции, то анодное растворение прекращается, так как скорость растворения компенсируется скоростью осаждения металла (соответствует плотности тока обмена) при этой величине потенциала. Таким образом, потерь от разъедания не будет. По существу, вся поверхность объекта будет содержать участки с протекающими на них только катодными коррозионными реакциями выделения водорода, восстановления кислорода или той и другой вместе. Это и является основой катодной защиты.

Катодная защита иллюстрируется на рис. 2. В условиях беспрепятственной коррозии образец приобретает стационарный потенциал Е и металл корродирует со скоростью, эквивалентной iкорр. Если осуществляется катодная поляризация и потенциал образца понижается до Е1 приложенным извне током i1, то образец становится частично защищенным, поскольку скорость коррозии снижается от iкорр до i’корр. Если приложенный извне ток будет увеличен до i2, так что потенциал образца снизится до Е2, то есть обратимого потенциала анодной реакции, то анодное растворение приостановится. Образец будет находиться в условиях полной катодной защиты.

Рис. 2 Катодная защита. Приложенный катодный ток i1 снижает скорость коррозии от iкорр до i,корр, частично защищая металл; приложенный катодный ток i2 обеспечивает полную защиту

 

Основным критерием катодной защиты является защитный потенциал. Защитным потенциалом называется потенциал, при котором скорость растворения металла принимает предельно низкое значение, допустимое для данных условий эксплуатации. Характеристикой катодной защиты является величина защитного эффекта Z (%):

,

где К0 [г/(м2 ч)] – скорость коррозии металла без защиты, К1 [г/(м2 ч)] – скорость коррозии металла в условиях электрохимической защиты. Коэффициент защитного действия Кз [г/А] определяют по формуле:

,

где – потери массы металла соответственно без катодной защиты и при её применении (г/ м2), [А/м2] – плотность катодного тока.

При организации катодной защиты отрицательный полюс внешнего источника тока присоединяют к защищаемой металлической конструкции, а положительный полюс – к вспомогательному электроду, работающему как анод. В процессе защиты анод разрушается и его необходимо периодически заменять (!!!).

Источниками внешнего тока при катодной защите служат станции катодной защиты, обязательными элементами которых являются: преобразователь (выпрямитель), вырабатывающий ток; токоподвод к защищаемой конструкции, электрод сравнения, анодные заземлители, анодный кабель.

Станции катодной защиты бывают регулируемые и нерегулируемые.

Нерегулируемые станции катодной защиты применяются в том случае, когда изменения сопротивления в цепи тока практически отсутствуют. Указанные станции работают в режиме поддержания постоянного потенциала или тока и применяются для защиты резервуаров, высоковольтных кабелей в стальной броне, хранилищ, трубопроводов и др.

Регулируемые станции катодной защиты применяются при наличии в системе блуждающих токов (близость электрифицированного транспорта), периодических изменений сопротивления растеканию тока (сезонные колебания температуры и влажности грунтов), технологических колебаний (изменение уровня раствора и скорости течения жидкости). Регулируемым параметром может служить ток или потенциал. Частота расположения станций катодной защиты по длине защищаемого объекта определяется электропроводностью эксплуатационной среды. Чем она выше, тем на большем расстоянии друг от друга будут располагаться катодные станции.

Анодные заземлители, соединяющие положительный полюс катодной станции с землей, изготавливаются из различных материалов – стали, графита, ферросилицида, титана, платинированного титана и др. Схема расположения анодных заземлителей определяется конфигурацией защищаемой конструкции. Мощность станции катодной защиты определяется максимальным сопротивлением растеканию тока с анодных заземлителей. С целью снижения указанного сопротивления анодные заземлители располагают либо на участках грунта, обладающих минимальным сопротивлением, либо в специальных коксовых обсыпках.

Засыпка представляет собой толстый слой кокса, в которую добавляют гипс и поваренную соль в соотношении 4:1. Такая засыпка имеет высокую электропроводность.

Для защиты водных объектов аноды устанавливают на дне рек и морей. При защите заводской аппаратуры аноды погружают в технологические среды.

Катодную защиту внешним током применяют как дополнительное средство к изоляционному покрытию. При этом изоляционное покрытие может иметь повреждения. Защитный ток протекает в основном по обнаженным участкам металла, которые и нуждаются в защите.

Применяют катодную защиту внешним током и к конструкциям, имеющим значительные повреждения, что позволяет приостановить дальнейшее распространение коррозии.

Использование катодной защиты сопряжено с опасностью так называемой перезащиты. В этом случае вследствие слишком сильного смещения потенциала защищаемой конструкции в отрицательную сторону может резко возрасти скорость выделения водорода. Результатом этого является водородное охрупчивание или коррозионное растрескивание материалов и разрушение защитных покрытий (!!!).


Протекторная защита

Протекторная защита является разновидностью катодной защиты. К защищаемой конструкции присоединяют более электроотрицательный металл – протектор – который, растворяясь в окружающей среде, защищает от разрушения основную конструкцию. После полного растворения протектора или потери контакта с защищаемой конструкцией, протектор необходимо заменить.

Протектор работает эффективно, если переходное сопротивление между ним и окружающей средой невелико. Действие протектора ограничивается определенным расстоянием. Максимально возможное удаление его от защищаемой конструкции называется радиусом защитного действия протектора (!!!).

Протекторную защиту применяют в тех случаях, когда получение энергии извне для организации катодной защиты связано с трудностями, а сооружение специальных электролиний экономически невыгодно.

Протекторную защиту применяют для борьбы с коррозией металлических конструкций в морской и речной воде, грунте и других нейтральных средах. Использование протекторов в кислых растворах нецелесообразно вследствие высокой скорости саморастворения.

В качестве протекторов можно применять металлы: Al, Mg, Zn. Однако использовать чистые металлы в качестве протекторов не всегда целесообразно. Так, например, чистый цинк растворяется неравномерно из-за крупнозернистой дендритной структуры, поверхность чистого алюминия покрывается плотной оксидной пленкой, магний имеет высокую скорость собственной коррозии. Для придания протекторам требуемых эксплуатационных свойств в их состав вводят легирующие элементы.

В состав цинковых протекторов вводят Cd (0,025-0,15%) и Al (0,1-0,5%). Содержание таких примесей, как Fe, Cu, Pb стараются поддерживать на уровне не более 0,001-0,005%. В состав алюминиевых протекторов вводят добавки, предотвращающие образование оксидных слоев на их поверхности – Zn (до 8%), Mg (до 5%), а также Cd, In, Gl, Hg, Tl, Mn, Si (от сотых до десятых долей процента), способствующие требуемому изменению параметров решетки. Магниевые протекторные сплавы в качестве легирующих добавок содержат Al (5-7%) и Zn (2-5%); содержание таких примесей, как Fe, Ni, Cu, Pb, Si поддерживают на уровне десятых или сотых долей процента. Железо в качестве протекторного материала используют либо в чистом виде (Fe-армко) либо в виде углеродистых сталей.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-01-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: