Вращение точки вокруг проецирующей прямой
Рассмотрим вращение точки А вокруг горизонтально проецирующей прямой i (рисунок 78). Плоскость, в которой точка описывает окружность, будет горизонтальной плоскостью уровня, поскольку перпендикулярна к горизонтально проецирующей прямой i. Окружность, которую описывает точка А при вращении, проецируется на виде сверху (на горизонтальной проекции) без искажения, а на виде спереди (на фронтальной проекции) – в виде прямой линии перпендикулярной линиям связи.
|
Если точка вращается вокруг фронтально проецирующей прямой i, то плоскость окружности вращения будет фронтальной плоскостью уровня (рисунок 79). На виде спереди (фронтальной проекции) эта окружность проецируется без искажения, а на виде сверху (горизонтальной проекции) – в виде отрезка прямой, перпендикулярной линиям связи.
Таким образом, при вращении точки вокруг проецирующей прямой одна проекция точки (та, где прямая “вырождается” в точку) перемещается по окружности, а другая – по прямой перпендикулярной линиям связи.
Вращение прямой линии вокруг проецирующей прямой
Так как прямая определяется двумя точками, то вращение прямой сводится к вращению этих двух точек.
|
Рассмотрим пример поворота прямой общего положения т на угол ω против движения часовой стрелки (рисунок 80).
Выбрав на прямой две произвольные точки 1 и 2, повернем каждую из них в заданном направлении на заданный угол ω. Новые положения точек 11 и 21 определят новое положение прямой т после поворота – т 1.
Здесь равны треугольники Δ1-2- I = Δ11-21- i, по двум равным сторонам 1- I = 11- i и 2- I = 21- i и равным углам ω между ними. Принимая во внимание, что отрезки 1-2 и 11-21 равны (как стороны равных треугольников) можно сделать вывод: расстояние между проекциями точек прямой линии при ее повороте на некоторый угол вокруг проецирующей прямой остается неизменным на той проекции, где траектория вращения проецируется без искажения – в виде окружности.
Это свойство позволяет несколько упростить построение новых проекций прямой при повороте вокруг проецирующих прямых. На рисунке 81 выполнен поворот прямой t вокруг горизонтально проецирующей прямой i с применением упрощенных построений. Как и ранее, прямая задана двумя точками 1 и 2. Но если точка 1 выбрана произвольно, то точка 2 определяется на перпендикуляре, опущенном из точки i (в которую проецируется прямая i) на прямую t.
|
|