Клетка как элементарная генетическая и структурно-функциональная биологическая единица. 5 глава




У млекопитающих и человека периоды размножения и роста яйцеклеток происходят в фолликулах. Зрелый фолликул заполнен жидкостью, внутри него находится яйцеклетка. Во время овуляции стенка фолликула лопается, яйцеклетка попадает в брюшную полость, а затем, как правило, в маточные трубы. Период созревания яйцеклеток протекает в трубах, здесь же происходит оплодотворение.

У многих животных овогенез и созревание яйцеклеток совершаются лишь в определенные сезоны года. У женщин обычно ежемесячно созревает одна яйцеклетка, а за весь период половой зрелости – около 400. Для человека имеет существенное значение тот факт, что первичные овоциты формируются еще до рождения и затем сохраняются всю жизнь и лишь постепенно некоторые из них начинают переходить к созреванию и дают яйцеклетки. Это значит, что различные неблагоприятные факторы, которым подвергается в течение жизни женский организм, могут сказаться на их дальнейшем развитии; ядовитые вещества (в том числе никотин и алкоголь), попадающие в организм, могут проникнуть в овоциты и в дальнейшем вызвать нарушения нормального развития будущего потомства.

Мейоз. Как известно, в ядрах соматических клеток все хромосомы парные, набор хромосом двойной (2n), диплоидный. В процессе созревания половых клеток происходит редукционное деление (мейоз), при котором число хромосом уменьшается, становится одинарным (n), гаплоидным. Мейоз (гр. meiosis уменьшение) происходит во время гаметогенеза. Этот процесс совершается во время двух следующих одно за другим делений периода созревания, называемых соответственно первым и вторым мейотическими делениями.

В интерфазе I (по-видимому, еще в период роста) происходит удвоение количества хромосомного материала путем редупликации молекул ДНК.

Из всех фаз наиболее продолжительна и сложна по протекающим в ней процессам профаза I. В ней различают 5 последовательных стадий. Лептонема – стадия длинных, тонких, слабо спирализованных хромосом, на которых видны утолщения – хромомеры. Зигонема – стадия попарного соединения гомологичных хромосом, при котором хромомеры одной гомологичной хромосомы точно прикладываются к соответствующим хромомерам другой (это явление называется конъюгацией, или синапсисом). Пахинема - стадия толстых нитей. Гомологичные хромосомы соединены в пары – биваленты. Число бивалентов соответствует гаплоидному набору хромосом. На этой стадии каждая из хромосом, входящих в бивалент, состоит уже из двух хроматид, поэтому каждый бивалент включает в себя четыре хроматиды. В это время конъюгирующие хромосомы переплетаются, что приводит к обмену участками хромосом (происходит так называемый перекрест, или кроссинговер). Диплонема – стадия, когда гомологичные хромосомы начинают отталкиваться друг от друга, но в ряде участков, где происходит кроссинговер, они продолжают быть еще связанными. Диакинез – стадия, на которой отталкивание гомологичных хромосом продолжается, но они еще остаются соединенными в биваленты своими концами, образуя характерные фигуры – кольца и кресты (хиазмы). На этой стадии хромосомы максимально спирализованы, укорочены и утолщены. Непосредственно после диакинеза ядерная оболочка растворяется.

В прометафазе I спирализация хромосом достигает наибольшей степени. Они перемещаются в области экватора. В метафазе I биваленты располагаются в направлении к противоположным полюсам и отталкиваются друг от друга. В анафазе I начинают расходиться к полюсам не хроматиды, а целые гемологичные хромосомы каждой пары, так как в отличие от митоза центромера не делится и хроматиды не разъединяются. Этим первое мейотическое деление принципиально отличается от митоза. Деление заканчивается телофазой I.

Таким образом, во время первого мейотического деления происходит расхождение гомологичных хромосом. В каждой дочерней клетке уже содержится гаплоидное число хромосом, но содержание ДНК еще равно диплоидному их набору. Вслед за короткой интерфазой, во время которой синтеза ДНК не происходит, клетки вступают во второе мейотическое деление.

Прометафаза II продолжается недолго. Во время метафазы II хромосомы выстраиваются по экватору, центромеры делятся. В анафазе II сестринские хроматиды направляются к противоположньм полюсам. Деление заканчивается телофазой II. После этого деления хроматиды, попавшие в ядра дочерних клеток, называются хромосомами.

Итак, при мейозе гомологичные хромосомы соединяются в пары, затем в конце первого мейотического деления расходятся по одной в дочерние клетки. Во время второго мейотического деления гомологичные хромосомы расщепляются и расходятся в новые дочерние клетки. Следовательно, в результате двух последовательных мейотических делений из одной клетки с диплоидным набором хромосом образуются четыре клетки с гаплоидным набором хромосом. В зрелых гаметах число хромосом и количество ДНК вдвое меньше, чем в соматических клетках.

При образовании как мужских, так женских половых клеток происходят принципиально одни и те же процессы, хотя в деталях они несколько различаются. Очень существенным отличием мейоза при овогенезе является наличие специальной стадии - диктиотены, отсутствующей при сперматогенезе. Она наступает вслед за диплонемой. На этой стадии мейоз в овоцитах прерывается на многие годы и переход к диакинезу наступает лишь при созревании яйцеклетки.

Значение мейотического деления заключается в следующем:

1. Это тот механизм, который обеспечивает поддержание постоянства числа хромосом. Если бы не происходило редукции числа хромосом при гаметогенезе, то из поколения в поколение возрастало бы их число и был бы утрачен один из существенных признаков каждого вида - постоянство числа хромосом.

2. При мейозе образуется большое количество различных новых комбинаций негомологичных хромосом. Ведь в диплоидном наборе они двойного происхождения: в каждой гомологичной паре одна из хромосом от отца, другая - от матери. При мейозе хромосомы отцовского и материнского происхождения образуют в сперматозоонах и яйцеклетках большое количество новых сочетаний, а именно 2n, где n - число пар хромосом. Следовательно, у организма, имеющего три пары хромосом, этих сочетаний окажется 23, т. е. 8; у дрозофилы, имеющей 4 пары хромосом, их будет 24, т. е. 16, a y человека - 223, что составляет 8388608.

3. В процессе кроссинговера также происходит рекомбинация генетического материала. Практически все хромосомы, попадающие в гаметы, имеют участки, происходящие как от первоначально отцовских, так и от первоначально материнских хромосом. Этим достигается еще большая степень перекомбинации наследственного материала. В этом одна из причин изменчивости организмов, дающей материал для отбора.

Осеменение, оплодотворение. Осеменение. Ряд процессов, обусловливающих встречу женских и мужских гамет у животных, называется осеменением. Различают осеменение наружное и внутреннее. Наружное осеменение встречается у многих животных, обитающих в воде. В этом случае яйца и сперматозооны выделяются в окружающую среду, где происходит их слияние. Внутреннее осеменение характерно для обитателей суши, где отсутствуют условия для сохранения и встречи гамет во внешней среде. При этой форме осеменения сперматозооны во время полового акта вводятся в половые пути самки.

У млекопитающих и человека сперматозооны в женских половых путях передвигаются благодаря собственной подвижности и мышечным сокращениям матки и маточных труб. Встреча гамет происходит в верхних отделах маточных труб.

Оплодотворение - соединение двух гамет, в результате чего образуется оплодотворенное яйцо, или зигота (гр. zygota - соединенная в пару) - начальная стадия развития нового организма.

Оплодотворение влечет за собой два важных следствия: активацию яйца, т. е. побуждение к развитию, и синкариогамию, т. е. образование диплоидного ядра зиготы в результате слияния гаплоидных ядер половых клеток, несущих генетическую информацию двух родительских организмов.

Встрече гамет способствует то, что яйцеклетки растений и животных выделяют в окружающую среду химические вещества - гамоны, активизирующие сперматозооны. Возможно, что активизирующие вещества выделяются и клетками женских половых путей млекопитающих. Установлено, что сперматозооны млекопитающих могут проникнуть в яйцеклетку только в том случае, если находились в женском половом тракте не менее 1 ч.

У спермиев ряда низших растений обнаружен положительный хемотаксис к веществам, выделяемым яйцеклеткой. Убедительных доказательств хемотаксиса у сперматозоонов животных не существует. Они двигаются беспорядочно и с яйцеклеткой сталкиваются случайно.

В оболочке яйцеклетки некоторых животных существует крошечное отверстие - микропиле, через которое проникает сперматозоон. У большинства видов микропиле отсутствует, проникновение сперматозоона осуществляется благодаря акросомной реакции, обнаруженной с помощью электронной микроскопии. Расположенная на переднем конце сперматозоона акросомная область окружена мембраной. При контакте с яйцом оболочка акросомы разрушается. Из нее выбрасывается акросомная нить, выделяются фермент, растворяющий оболочку яйцеклетки, и фермент гиалуронидаза, разрушающий фолликулярные клетки, окружающие яйцо. Акросомная нить проникает через растворенную зону яйцевых оболочек и сливается с мембраной яйцеклетки. В этом месте из цитоплазмы яйцеклетки образуете воспринимающий бугорок. Он захватывает ядро, центриоли и митохондрии сперматозоона и увлекает их вглубь яйца. Плазматическая мембрана сперматозоона встраивается в поверхностную мембрану яйца, образуя мозаичную наружную мембрану зиготы.

Проникновение сперматозоона в яйцеклетку изменяет ее обмен веществ, показателем чего является ряд морфологических и физиологических преобразований. Повышается проницаемость клеточной мембраны, усиливается поглощение из окружающей среды фосфора и калия, выделяется кальций, увеличивается обмен углеводов, активируется синтез белка. У ряда животных возрастает потребность в кислороде. Так, у морского ежа в первую же минуту после оплодотворения поглощение кислорода повышается в 80 раз. Меняются коллоидные свойства протоплазмы. Вязкость увеличивается в 6-8 раз. В наружном слое яйца изменяются эластичность и оптические свойства. На поверхности отслаивается оболочка оплодотворения; между ней и поверхностью яйца образуется свободное, наполненное жидкостью, пространство. Под ним образуется оболочка, которая обеспечивает скрепление клеток, возникающих в результате дробления яйца. После образования оболочки оплодотворения другие сперматозооны уже не могут проникнуть в яйцеклетку.

Показателем изменения обмена веществ является и то, что у ряда видов животных созревание яйца заканчивается только после проникновения в него сперматозоона. У круглых червей и моллюсков лишь в оплодотворенных яйцеклетках выделяется вторичный полоцит. У человека сперматозооны проникают в яйцеклетки, находящиеся еще в периоде созревания. Первичный полоцит выделяется через 10 ч, вторичный - только через 1 сутки после проникновения сперматозоона.

Кульминационным моментом в процессе оплодотворения является слияние ядер. Ядро сперматозоона (мужской пронуклеус) в цитоплазме яйца набухает и достигает величины ядра яйцеклетки (женского пронуклеуса). Одновременно мужской пронуклеус поворачивается на 180° и центросомой вперед движется в сторону женского пронуклеуса; последний также перемещается ему навстречу. После встречи ядра сливаются. В результате синкариогамии восстанавливается диплоидный набор хромосом. После образования синкариона яйцо приступает к дроблению.

Изучение физиологии оплодотворения позволяет понять роль большого числа сперматозоонов, участвующих в оплодотворении. Установлено, что если при искусственном осеменении кроликов в семенной жидкости содержится менее 1000 сперматозоонов, оплодотворения не наступает. Точно так же не происходит оплодотворения при введении очень большого числа сперматозоонов (более 100 млн.). Это объясняется в первом случае недостаточным, а во втором - избыточным количеством ферментов, необходимых для проникновения сперматозоонов в яйцеклетку.

Разработаны методики искусственного оплодотворения яйцеклеток человека вне организма и в ряде случаев это осуществлялось по медицинским показаниям. Накануне овуляции хирургическим путем яйцеклетку извлекают из яичника. Ее помещают в специально разработанную химическую среду со сперматозоонами, где и происходит слияние половых клеток. Зародыш на стадии 8-16 бластомеров имплантируется в матку женщины и нормально развивается.

Моноспермия и полиспермия. В яйцеклетку проникает, как правило, один сперматозоон (моноспермия). Однако у насекомых, рыб, птиц и некоторых других животных в цитоплазму яйцеклетки их может попасть несколько. Это явление получило название полиспермии. Роль полиспермии не совсем ясна, но установлено, что ядро лишь одного из сперматозоонов (мужской пронуклеус) сливается с женским пронуклеусом. Следовательно, в передаче наследственной информации принимает участие только этот сперматозоон. Ядра других подвергаются разрушению.

Партеногенез. Особую форму полового размножения представляет собой партеногенез (гр. parthenos - девственница, genos - рождение) т. е. развитие организма из неоплодотворенных яйцевых клеток. Эта форма размножения была обнаружена в середине XVIII в. швейцарским натуралистом Ш. Бонне (1720-1793). В настоящее время известен не только естественный, но и искусственный партеногенез.

Естественный партеногенез существует у ряда растений, червей, насекомых, ракообразных. У некоторых животных любое яйцо способно развиваться как без оплодотворения, так и после него. Это так называемый факультативный партеногенез. Он встречается у пчел, муравьев, коловраток, у которых из оплодотворенных яиц развиваются самки, а из неоплодотворенных - самцы. У этих животных партеногенез возник как приспособление для регулирования численного соотношения полов.

При облигатном, т. е. обязательном, партеногенезе яйца развиваются без оплодотворения. Этот вид партеногенеза известен, например, у кавказской скальной ящерицы. У многих видов партеногенез носит циклический характер. У тлей, дафний, коловраток в летнее время существуют лишь самки, размножающиеся партеногенетически, а осенью партеногенез сменяется размножением с оплодотворением (это явление получило название гетерогении). Облигатный и циклический партеногенез исторически развивался у тех видов животных, которые погибали в большом количестве (тли, дафнии) или у которых была затруднена встреча особей различного пола (скальные ящерицы). Вид кавказской скальной ящерицы сохранился лишь благодаря появлению партеногенеза, так как встреча двух особей, обитающих на скалах, отделенных глубокими ущельями, затруднена. В настоящее время все особи этого вида представлены лишь самками, размножающимися партеногенетически.

Установлено существование партеногенеза у птиц. У одной из пород индеек многие яйца развиваются партеногенетически; из них появляются только самцы.

В ядрах соматических клеток особей, развившихся из неоплодотворенных яиц, в ряде случаев имеется гаплоидный набор хромосом (таковы самцы коловраток), в других - диплоидный (тли, дафнии). Широко распространен партеногенез у личиночных стадий сосальщиков и других паразитов, что обеспечивает им интенсивное размножение и выживание несмотря на массовую гибель на различных этапах жизненного цикла.

Искусственный партеногенез исследовал А. А. Тихомиров. Он добился развития неоплодотворенных яиц тутового шелкопряда, раздражая их тонкой кисточкой или обрабатывая в течение нескольких секунд серной кислотой.

Тот факт, что дробление яйца начинается только после его оплодотворения, получил объяснение благодаря опытам с искусственным партеногенезом. Они показали, что для развития яйца необходима активация. Она является следствием тех сдвигов в обмене веществ, которые сопутствуют оплодотворению. В естественных условиях эти сдвиги происходят после проникновения сперматозоона в яйцеклетку, но в эксперименте могут быть вызваны разнообразными воздействиями: химическими, механическими, электрическими, термическими и др. Все они, так же, как проникновение сперматозоона, влекут за собой обратимые повреждения протоплазмы яйцеклетки, что изменяет метаболизм и оказывает активирующее воздействие.

Оказалось, что сравнительно легко поддаются активации яйца млекопитающих. Извлеченные из тела неоплодотворенные яйца кролика были активированы воздействием пониженной температуры. После пересадки в матку другой крольчихи они развились в нормальных крольчат. Предпринимались опыты по активированию неоплодотворенного яйца человека; получены ранние стадии развития зародыша.

Б. Л. Астауров (1904-1974) в 1940 1960 гг. разработал промышленный способ получения партеногенетического потомства у тутового шелкопряда.

Биологическая роль полового размножения. Еще К.А.Тимирязев (1843-1920) и А. Вейсман (1834-1914) правильно отмечали, что половое размножение дает неиссякаемый источник изменчивости, обусловливающий широкие возможности приспособления организмов к среде обитания. В этом преимущество полового размножения перед вегетативным и спорообразованием, при которых организм только одного родителя и почти целиком повторяет его особенности. При половом размножении благодаря комбинации наследственных cвойств обоих родителей появляются разнообразные потомки. Могут отмечаться и неудачные комбинации наследственных признаков; эти организмы гибнут в результате естественного отбора. С другой стороны, наблюдаются и такие комбинации, которые делают организм хорошо приспособленным к условиям существования. Кроме того, с каждым поколением выживают организмы, имеющие наиболее благоприятные комбинации наследственных свойств, что ведет к прогрессивной эволюции.

Благодаря этой биологической роли половое размножение нашло широкое распространение и занимает доминирующее положение в природе, несмотря на определенные сложности его осуществления. Для бесполого размножения достаточно одной особи. Для полового размножения у большинства видов организмов требуется встреча двух особей разного пола. Даже у истинных гермафродитов обычно существует перекрестное оплодотворение Встреча двух особей подчас связана с затруднениями, поэтому в процессе естественного отбора появились сложные приспособления в строении организмов, развились эндокринные и рефлеклекторные механизмы, направленные в конечном итоге на обеспечение встречи гамет.

Половой диморфизм. Под половым диморфизмом понимаются различия между самцами и самками в строении тела, окраске, инстинктах и ряде других признаков. Половой диморфизм проявляется уже на ранних ступенях эволюции. У круглых червей самки крупнее самцов. У многих из них, например у аскариды, самец имеет спикулы и загнутый в брюшную сторону задний конец тела.

У представителей всех классов членистоногих половой диморфизм ярко выражен. Для большинства представителей этого типа характерно то, что самки крупнее самцов. Самцы и самки бабочек, как правило, различно окрашены. Самцы у жуков (например, жук-носорог, жук-олень и др.) обладают специальными органами.

Хорошо выражен половой диморфизм у многих видов позвоночных. У некоторых видов рыб он проявляется в величине, особенностях строения тела и окраске. Из земноводных он ярко выражен у тритонов. Самцы этих животных в брачный период имеют яркую окраску брюха и зубчатый гребень на спине.

У большинства видов птиц самцы существенно отличаются от самок, особенно в брачный период. Так, самец болотного кулика турухтана в обычном оперении мало отличается от самки, но весной в его оперении появляется украшение, резко отличающее его от самки и характеризующееся удивительным разнообразием как формы, так и окраски.

Выражен половой диморфизм и у человека. В среднем рост, массивность костей скелета и мускулатуры, величина черепа у мужчин больше, чем у женщин. При одинаковой длине корпуса длина конечностей (особенно ног) у женщин меньше, чем у мужчин, у женщин меньше ширина плеч и больше ширина таза. Для мужчин характерна растительность на лице, низкий тембр голоса, выступающий вперед щитовидный хрящ гортани (кадык). Для женщин типично развитие грудных желез и большее развитие подкожной жировой клетчатки. У мужчин в таком же объеме крови, как у женщин, выше содержание гемоглобина и число эритроцитов. Имеются отличия и в ряде других признаков.

Половой диморфизм явился следствием особой формы естественного отбора, названного Ч. Дарвиным половым отбором. Предпосылкой действия полового отбора было различие в опознавательных признаках самца и самки, чем облегчалась встреча разнополых особей одного вида и препятствовалось скрещивание с представителями других видов.

Признаки, по которым один пол отличается от другого, принято делить на первичные и вторичные. К первичным относятся половые железы, все остальные признаки полового диморфизма - вторичные. У насекомых эти признаки определяются генотипом, у большинства высших беспозвоночных и всех позвоночных связаны с эндокринной системой.

Паразитическое ракообразное саккулина, поселяясь в организме краба, приводит своего хозяина в состояние, получившее название паразитической кастрации, при которой разрушается половая железа. В результате самец внешне становится сходным с самкой. У самцов лягушек на большом пальце передних конечностей имеется утолщение - «брачная мозоль». Однако у кастрированных особей это образование не развивается. Если же кастрату пересадить семенник или только инъецировать мужской половой гормон, то мозоль появляется.

М. М. Завадовский (1891-1957) провел интересные опыты на курах. После кастрации петухов (удаление половых желез) гребень перестает расти, бледнеет и сморщивается, исчезает бородка, утрачивается способность петь, теряется половой инстинкт, но сохраняется характерное для петухов яркое оперение. Кастрированная курица лишается полового инстинкта, а после линьки приобретает петушиное оперение. При пересадке кастрату (независимо от того, был ли он прежде самцом или самкой) семенника у него развиваются все признаки петуха, а если пересажен яичник - то курицы.

Из этих демонстративных опытов видно, что не все вторичные половые признаки обусловлены половыми гормонами. Следует различать зависимые и независимые вторичные половые признаки. Зависимыми от мужского полового гормона у петуха оказались гребень, бородка, голос, поведение, независимым признаком - яркая окраска оперения. У курицы скромное оперение и особенности поведения являются зависимыми от половых гормонов признаками.

О влиянии половых желез на развитие вторичных половых признаков у человека можно судить на основании многочисленных наблюдений.

Известно, что кастрированный (т. е. лишенный половых желез) мужчина приобретает внешнее сходство с женщиной. Это выражается в характере оволосения, отсутствии растительности на лице, отложении жира на груди и в области таза и т. д. Если операция произведена в раннем детстве, то тембр голоса не меняется. Половое влечение у кастратов отсутствует.

Особенности полового поведения животных обычно обусловлены гормонами половых желез и наиболее выражены в брачный период; таковы токование птиц, «турнирные бои» самцов птиц и млекопитающих, ухаживание самцов за самками.

У человека после наступления полового созревания появляются вторичные половые признаки и половое влечение. Но у человека в отличие от животных биологический пол еще не превращает индивида в мужчину или женщину и не обеспечивает соответствующего полового поведения. Для этого требуется еще чтобы человек осознал свою половую принадлежность и усвоил соответствующее своему полу поведение. В этом заключается одна из важнейших сторон формирования личности. Ребенок обычно к 1,5- 2 годам знает свой пол и в дальнейшем в соответствии с этим направляет свое поведение. По мере полового созревания возникают сексуальные интересы, но на все поведение опять-таки большую формирующую роль оказывает социальная среда.

Биологические особенности репродукции человека. Способность крепродукции становится возможной после полового созревания. Признаком наступления полового созревания у человека являются первые поллюции (непроизвольное выделение сперматозоонов) у мальчиков и первые менструации у девочек. Половая зрелость наступает у лиц женского пола в возрасте 16-18 лет, мужского - в 18-20 лет. Сохраняется способность к репродукции у женщин до 40-45 лет (в редких случаях – дольше), а у мужчин до старости, возможно в течение всей жизни.

Продукция гамет у представителей обоих полов совершенно различна: зрелый семенник непрерывно вырабатывает огромное количество сперматозоонов; половозрелый яичник периодически (один раз в лунный месяц) выделяет зрелую яйцеклетку, созревающую из числа овоцитов, которые закладываются на ранних этапах онтогенеза и запасы которых убывают в течение жизни женщины. Значение того, что овоциты закладываются еще до рождения, состоит в том, что потомство, появляющееся к концу репродуктивного периода, развивается из овоцитов, в которых за длительный срок жизни женщины могли возникнуть генетические дефекты. Следствием этого является то, что у пожилых матерей относительно чаще рождаются дети с врожденными дефектами. Необходимо подчеркнуть, что основную опасность представляет не сам возраст матери, а мутагенные факторы и факторы, влияющие на развитие плода..

У человека, как и у других организмов, имеющих внутреннее оплодотворение, мужские половые клетки приполовом акте (коитусе) вводятся в половые органы женщины. Во время извержения семенной жидкости (эякуляция) у человека выделяется около 200 млн. сперматозоонов, но только один из них оплодотворяет яйцеклетку Встреча женских и мужских гамет происходит в верхних отделах маточных труб. Потребность в колоссальном количестве сперматозоонов объясняется случайным, ненаправленным их движением, непродолжительной жизнеспособностью, массовой гибелью при продвижении по женским половым путям. В результате этого верхних отделов маточной трубы достигает лишь около 100 сперматозоонов. Перемещение их осуществляется благодаря собственной подвижности, а также в результате мышечных сокращений стенок полового тракта и направленного движения ресничек слизистой оболочки маточных труб. Сперматозооны в женских половых путях сохраняют способность к оплодотворению в течение 1-2 суток, яйцеклетки - на протяжении суток после овуляции. Оплодотворение осуществляется обычно в течение первых 12 ч после овуляции. В процессе проникновения сперматозоона через барьер фолликулярных клеток, окружающих яйцеклетку и ее оболочку, большую роль играет акросомная реакция. Вслед за проникновением сперматозоона в яйцеклетку образуется оболочка оплодотворения, препятствующая проникновению других сперматозоонов. Зигота опускается по маточным трубам и на восьмые - десятые сутки зародыш внедряется в стенку матки. Если оплодотворение не наступило, яйцеклетка удаляется из организма.

НАСЛЕДСТВЕННОСТЬ И ИЗМЕНЧИВОСТЬ (ОСНОВЫГЕНЕТИКИ)

Краткие сведения из истории генетики. Генетика (гр. genetikos - относящийся к происхождению) изучает закономерности наследственности и изменчивости, которые относятся к основным свойствам живой материи, всех организмов. Генетика как наука развилась в связи с практическими потребностями. При разведении домашних животных и культурных растений исстари применялась гибридизация, т. е. скрещивание организмов, относящихся к различным видам, породам, сортам или отличающихся друг от друга какими-либо признаками. Сравнивая гибриды с исходными формами, практики давно подметили некоторые особенности наследования признаков.

Основные закономерности преемственности свойств и признаков в поколениях были открыты Г. Менделем (1822-1884). О своих исследованиях он сделал сообщение в 1865 г. на заседании Общества любителей естествознания в г. Брно (Чехословакия). Ставшая впоследствии классической работа Менделя «Опыты над растительными гибридами» была опубликована в трудах того же общества в 1866 г., но в свое время не привлекла внимания современников.

Лишь в 1900г. те же закономерности вновь установили независимо друг от друга Г.де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии. Вскоре благодаря опытам по гибридизации, проведенным с многочисленными объектами, было показано, что открытые Менделем закономерности свойственны всем организмам, растениям и животным. 1900 г. можно считать годом второго рождения генетики.

На рубеже XIX и XX вв. передачу наследственных свойств еще не связывали с определенными структурами, хотя не вызывало сомнений, что она осуществляется какими-то факторами материальной природы, находящимися в половых клетках. В начале XX в. по предложению датского ученого И. Иогансена дискретным единицам наследственности было дано название генов.

Ко времени вторичного открытия законов Менделя наука уже накопила факты, которые способствовали обнаружению материального субстрата наследственности.

В 80-х годах XIX в. Ван-Бенден, Т. Бовери и другие исследователи описали сложные процессы, протекающие при образовании гамет (мейоз), и установили, что в зиготе происходит восстановление диплоидного набора хромосом, состоящего из одинакового числа хромосом обоих родителей.

В 1902 г. Т. Бовери в Германии, Э. Вильсон и Д. Сеттон в США отметили, что в передаче наследственных факторов существует параллелизм в поведении хромосом при формировании половых клеток и оплодотворении. Из этого совпадения вытекало предположение о связи наследственных факторов с хромосомами. Гипотеза оказалась плодотворной и ознаменовала новый этап в изучении явлений наследственности, связанный с синтезом генетики:и цитологии.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-06-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: