М. Н. Полякова, А. М. Вербенец 12 глава




У детей 4—5 лет следует развивать представления о последова­тельности частей суток и о сутках в целом; нужно ознакомить со значением слов вчера, сегодня, завтра. Детей старшего дошколь­ного возраста можно знакомить с неделей, месяцами, годом. Па­раллельно надо развивать и само чувство времени; знакомить с длительностями таких мер времени, как 1 минута, 3, 5, 10 минут, полчаса и час; учить пользоваться такими приборами измерения времени, как песочные и обычные часы. Наряду с этим надо уп­ражнять детей в умении самостоятельно вычленять временную последовательность в протекании рассматриваемых явлений, дей­ствий.

Освоение последовательности частей суток

Сутки принято делить на четыре части: утро, день, вечер, ночь. Такое деление, с одной стороны, связано с объективными изме­нениями, происходящими в окружающей среде (в связи с различ­ными положениями солнца, освещенностью земной поверхности, воздушного пространства, появлением и исчезновением луны, звезд), а с другой — со сменой видов деятельности людей, с чере­дованием труда и отдыха. Продолжительность каждой части суток бывает различной, поэтому их смена принята условно.

Среди разнообразных видов деятельности, которые ежеднев­но повторяются в режиме дня ребенка, есть постоянные, име­ющие место только один раз в сутки, в определенное время: это приход в детский сад, утренняя гимнастика, обед, послеобеден­ный сон и т. д. Есть и вариативные виды деятельности, повторя­ющиеся несколько раз в течение дня, в разные части суток: игры, умывание, одевание и раздевание, прогулка и т. п. Они также могут быть использованы в качестве показателей частей суток.

С целью определения частей суток и их последовательности используются картинки с изображением постоянных видов дея­тельности, характерных для каждой части суток. Задается вопрос: «Когда это бывает?» Затем предлагается выбрать те картинки, на которых нарисовано, что бывает в какой-либо из периодов суток (утром, днем, вечером или ночью).

Чтение отрывков из рассказов, стихотворений, в которых опи­сываются характерные для каждой части суток практические дей­ствия, игры-загадки («Когда это бывает?») ведут к накоплению опыта ориентировки во времени.

После того как дети научатся связывать части суток с той или иной деятельностью, их внимание следует сосредоточить на объ­ективных показателях, символизирующих время (положение солнца, степень освещенности земли, цвет неба и др.).

В дальнейшем используется цветовой символ как условный знак.

В конце года, когда у детей уже имеются представления о час­тях суток, целесообразно помочь им понять значение слова сутки, исключая количественную характеристику этой меры (24 часа). Слово сутки должно выступить как обобщение: сутки состоят их четырех частей — день, вечер, ночь и утро. Необходимо помочь детям осознать, что день, вечер, ночь, утро — это части целого, суток; что отсчет последовательности частей суток можно прово­дить начиная с любой из них.

С детьми среднего дошкольного возраста можно беседовать о значении слов сегодня, вчера, завтра. Для этого надо об одном ярком и значимом для детей событии поговорить трижды: сначала о том, что кукольный спектакль будет завтра; потом — что куколь­ный спектакль покажут сегодня; и, наконец, что его показывали вчера. Это дает возможность ребенку «приблизиться» к понима­нию текучести и непрерывности времени.

Знакомство с календарем

Календарное время — это определенные промежутки време­ни, продолжительность которых зафиксирована общественным опытом в общепринятых мерах времени: сутках, неделях, месяцах, годах.

У детей старшего дошкольного возраста, как правило, доволь­но неточные, отрывочные представления о календарном времени. Заучивание названий и последовательности дней недели, месяцев не дает представлений о длительности, емкости времени, его те­кучести, необратимости, смене и периодичности.

Чтение детям рассказа В. И. Даля «Старик-годовик» и беседа по прочитанному помогут им установить зависимость между вре­менными эталонами: год, месяц, неделя, сутки.

Вышел старик-годовик. Стал он махать руками и пускать птиц. Каждая птица со своим особым именем. Махнул старик-годовик первый раз — и полетели первые три птицы. Повеял холод, мороз.

Махнул старик-годовик второй раз — и полетела вторая тройка. Снег стал таять, на полях показались цветы.

Махнул старик-годовик третий раз — полетела третья тройка. Стало жарко, душно, знойно. Мужики стали жать рожь.

Махнул старик-годовик четвертый раз — и полетели еще три птицы. Подул холодный ветер, посыпался частый дождь, залегли туманы.

А птицы были не простые. У каждой птицы — по четыре крыла. В каждом крыле — по семи перьев. Каждое перо тоже со своим именем. Одна половина пера белая, другая — черная. Махнет птица раз — станет светлым-светло, махнет дру­гой — станет темным-темно.

Целесообразно задать детям следующие вопросы.

• Что это за птицы вылетели из рукава старика-годовика?

• Какие это четыре крыла у каждой птицы?

• Какие семь перьев в каждом крыле?

• Почему у каждого пера одна половина белая, а другая — черная? С помощью отрывного календаря определяется время наступ­ления праздников, что вызывает интерес у детей к прослежива­нию событий во времени. Календарь помогает осознать последо­вательность времен года, с которыми связаны сезонные измене­ния, являющиеся также предметом изучения. В старшем дошкольном возрасте развивается интерес к разным параметрам времени: ребенка 5—6 лет интересуют длительность того или иного явления, количественная характеристика мер времени, приборы измерения времени. Знакомство с календарем необходи­мо в плане подготовки детей к школе, привыканию к твердому распорядку занятий по часам и по дням недели.

Освоение знаний о календарных эталонах предполагает уме­ние измерять время с помощью общепринятых приборов.

У старших дошкольников уже есть необходимый запас коли­чественных представлений о продолжительности суток, что спо­собствует освоению ими представлений о числах месяца, днях не­дели, неделе; о месяцах, календарном годе. Для того чтобы эта сложная система взаимосвязанных единиц времени могла быть осознана детьми, ее надо представить в виде какой-либо модели календаря, отражающей в материальной форме отношения между единицами времени (примеры таких моделей представлены на илл. 5, 6 цв. вкладки).

Календарь поможет детям наглядно представить сравнительно длительный промежуток времени, месяц и даже год. В свое время Ф. Н. Блехер писала, что отрывной календарь дает наглядное пред­ставление о том, что «дни уходят», «события приближаются», про­шел месяц — наступил новый. Ф. Н. Блехер предупреждала, что не может быть и речи о заучивании с детьми последовательности дней недели, месяцев, их названий. Вместо этого она рекомендова­ла использовать отрывной календарь как наиболее наглядный при­бор измерения времени. Дети легко усваивают, что листок — это день; чтобы сорвать следующий листок, надо ждать целые сутки.

Развитие чувства времени у детей старшего дошкольного возраста

Развитое чувство времени (умение определять временные ин­тервалы без часов) побуждает ребенка быть более организован­ным, собранным. Для этого прежде всего необходимо развивать у детей чувство времени; создавать специальные ситуации, заостряя внимание дошкольников на длительности различных жизненно важных временных интервалов; показывать, что можно успеть сделать за эти отрезки времени; приучать в процессе деятельности измерять, а потом и оценивать временные промежутки; рассчиты­вать свои действия и выполнять их в заранее установленное время.

Для успешного развития у детей чувства времени необходимо следующее.

1) Переживание времени — представление о длительности временных интервалов. Для этого необходимо организовывать разнообразную деятельность детей в переделах временных отрез­ков, что даст им возможность почувствовать протяженность вре­мени и представить, что реально можно успеть сделать за тот или иной его отрезок. В дальнейшем это послужит основой формиро­вания способности планировать свою деятельность во времени, т. е. выбирать объем работы соответственно времени, которое не­обходимо потратить для ее выполнения.

2) Развитие у детей умения оценивать временные интервалы без часов. Самоконтроль и контроль со стороны взрослых помо­жет им совершенствовать адекватность оценок.

У детей 5—6 лет можно развивать чувство времени на ин­тервалах в 1, 3, 5 и 10 минут. Различение этих интервалов жиз­ненно важно для детей: 1 минута — та первоначальная, доступ­ная детям единица времени, из которой складываются 3, 5 и 10 минут. Эта мера времени наиболее распространена в речи ок­ружающих.

В методику, разработанную Т. Д. Рихтерман, включены сле­дующие моменты: ознакомление детей с временными интервала­ми в 1, 3, 5, 10 минут (при этом следует использовать секундомер, песочные часы для восприятия детьми длительности указанных интервалов); обеспечение переживания длительности этих интер­валов в разных видах деятельности; обучение умению выполнять деятельность в указанный срок (1, 3, 5 минут), для чего следует оценивать длительность деятельности, регулировать темп ее вы­полнения.

Сначала необходимо упражнять детей в выполнении деятель­ности по песочным часам (дети делают что-либо за 1 минуту и контролируют время по одноминутным песочным часам); этим обеспечивается накопление опыта в использовании мерки. Вос­питатель постоянно дает оценку умениям детей контролировать время по песочным часам, демонстрирует длительность минуты на секундомере, объяснив, что полный оборот стрелки всегда со­вершается за 1 минуту.

Затем дети упражняются в оценке длительности интервала времени в процессе деятельности. Воспитатель фиксирует внима­ние на точности оценки длительности.

И наконец, взрослый способствует освоению детьми умения предварительно планировать объем деятельности на указанный отрезок времени на основе имеющегося у ребенка представле­ния о его длительности. Проверка намеченного плана по выпол­нению объема работы осуществляется с помощью песочных часов.

В дальнейшем дети начинают переносить умение оценивать длительность временных отрезков в повседневные игры, занятия.

Дети самостоятельно выбирают объем работы, соответству­ющий интервалу в 1 минуту, отвечая на вопрос «Что ты успеешь сделать за 1 минуту?»

Освоение дошкольниками трех- и пятиминутных интервалов проводится по той же методике.

Интервал в 5 минут дети должны воспринять как величину, производную от 1 минуты: пять раз будут перевернуты минутные песочные часы, пять раз обойдет круг стрелка на секундомере. Таким образом, восприятие нового временного интервала про­изойдет на основе уже имеющихся у детей знаний о длительности 1-й и 3-х минут.

Ознакомление с 10-минутным интервалом можно проводить во время разных занятий, на которых детям предлагают выпол­нить то или иное задание в течение 10 минут.

Обучение детей умению определять время на часах и озна­комление их со строением часов желательно осуществлять с ис­пользованием моделей. Воспитатель совместно с детьми выясня­ют отличие часов от модели, уточняют назначение стрелок часов. Можно предложить детям большую стрелку поставить на цифру 12, а маленькую переводить с цифры на цифру и определять, что она показывает, т. е. ровно 8, 9 и т. д. часов. Затем дети узнают, что минутная стрелка, двигаясь по кругу, за 1 час проходит целый круг. А если круг разделить пополам (на макете часов можно закрыть половину циферблата цветным полукругом), по­лучается две половины круга. Половину круга стрелка проходит за полчаса. Так дети осваивают строение часов, назначение боль­шой и маленькой стрелки, способ показа какого-либо часа. Затем дети учатся показывать «полчаса», например половину второго часа, затем четверть (если необходимо, круг делится на 2, 4 части). Дети постоянно наблюдают за течением времени, пользуясь часами, а по мере осуществления какой-либо деятель­ности передвижением стрелок ставят такое же время на игрушеч­ных часах (моделях).

В ходе педагогического процесса в детском саду есть возмож­ность упражнять детей в умении осуществлять деятельность в рам­ках указанного времени, учить их самих определять продолжи­тельность и заранее планировать возможный объем работы на тот или иной отрезок времени в пределах 5—20 минут. В таких усло­виях дети более организованно занимаются, меньше отвлекаются, регулируют темп своей деятельности и больше успевают.

Развитие у детей умения понимать отношения временной последовательности

Ребенку 5—6 лет важно уметь последовательно рассматривать то или иное явление, объект, картину, излагать свои мысли, вы­полнять операции в спортивной и любой продуктивной деятель­ности. Для этого надо уметь вычленять временную последователь­ность при выполнении содержания и уметь ее воспроизводить или устанавливать заново. Самостоятельное овладение этими умениями затруднено.

Следовательно, нужны специально разработанные и введен­ные в процесс обучения приемы, направленные на вычленение, восстановление и установление временной последовательности, которые дадут возможность овладеть необходимыми способами действий.

Содержание, на котором дети будут устанавливать временную последовательность, должно быть хорошо знакомо им; выделяемые в нем звенья — значимыми и несущими определенную информа­цию; эмоциональная насыщенность выделенных звеньев должна быть примерно равнозначной. Для этого необходимо создать мо­дель последовательного ряда, где отдельные звенья с промежуточ­ными элементами, обозначенные символами, расположены от на­чала до конца. Взрослый вместе с ребенком может создать ситуа­цию роста и развития растения, роста и взросления ребенка, развития насекомого, используя при этом модели, картинки и вза­имосвязанные иллюстрации, а также литературные тексты.

Обучение детей старшего дошкольного возраста установле­нию временной последовательности осуществляется по следу­ющему плану:

• в развитии объекта (события) вычленяется временная после­довательность;

• временная последовательность воспроизводится на модели с помощью символов;

• последовательность воссоздается с запрограммированной ошибкой, которая исправляется детьми;

действия в заданной последовательности выполняются без модели Опыт обучения детей умению устанавливать временную по­следовательность показывает, что в таких условиях дошкольники чувствуют себя увереннее и самостоятельнее (Т.Д. Рихтерман).

Резюме

*° Непрерывность, сменяемость, длительность и последователь­ность событий во времени, темп и ритм, имеющие место в зву­чании музыки и танце, игре и чтении, интересуют и привлека­ют ребенка.

^ Планирование ребенком своей деятельности во времени способствует становлению у него таких положительных ка­честв, как организованность, собранность, целенаправлен­ность и др.

Литература

Х.Луэлин К. Моя первая книжка «Время».— М.: Дорлинг Кин-дерсли,1997.

2. Непомнящая Р. Л. Развитие представлений о времени у детей дошкольного возраста. - СПб.: ДЕТСТВО-ПРЕСС, 2005.

3. Рихтерман Т.Д. Формирование представлений о времени у детей в дошкольном возрасте. — М.: Просвещение, 1991.

4. Смоленцева А. А. Формирование временных представлений у дошкольников. Конспекты занятий // Дошкольная педагогика, 2004 г., №6; 2005 г., №5.

5. Теории и технологии развития математических представле­ний детей дошкольного возраста. Хрестоматия / Сост.: 3. А. Ми­хайлова, Р. Л. Непомнящая, М. Н. Полякова.— М.: Центр педаго­гического образования, 2008.

Вопросы и задания для самоконтроля

© Назовите особенности восприятия детьми времени, которые необходимо учитывать при разработке педагогических техно­логий.

© Прокомментируйте результаты разговора психолога В. С. Му­хиной с детьми (из дневниковых записей), определите их воз­раст.

Мухина В. С. Ребята, что такое год Кирилл. Год — это когда человек живет, живет, живет, пока не состарится на один год.

Андрей. Это лето, зима, осень и весна вместе. Потом снова лето, зима, осень и весна — другой год. Потом лето, зима, осень и весна — еще один год. Так всегда.

Мухина В. С. Что такое время?

Кирилл. Это человек живет, живет, а время идет, идет. Андрей. Вот часы время показывают. Мухина В. С. А как вы понимаете слово «завтра»? Кирилл. Вот сейчас поиграем, потом будем кушать, потом по­спим. Через ночь наступит завтра. Мухина В. С. А вчера?

Кирилл. Вчера — это значит сегодня. (Оба хохочут, но правильно не отвечают.).

© С какой целью в детском саду может быть организован музей часов (комната Гнома-часовщика)? Предложите другие пути обогащения предметно-развивающей среды, направленной на развитие представлений детей о времени.

© Достаточно ли ребенку 5—6 лет жизненного опыта для пони­мания высказывания А. Кристи «Время — такая неопределен­ная штука. Одному кажется очень долгим. Другому — наобо­рот»?

 

3.8. Освоение количественных отношений, чисел и цифр детьми дошкольного возраста

Историческому пути становления и развития методики освое­ния детьми множеств и чисел свойственно разнообразие подхо­дов. Исходные положения, с учетом которых современными пе­дагогами разрабатываются теории и технологии развития у детей числовых представлений, состоят в следующем.

Первая идея — взгляд на число как на «образ». Согласно этой тео­рии, первоначальное представление о числе у детей складывается на основе восприятия множеств (групп предметов) и называния их числом. Одновременно ребенок начинает соотносить цифру, как знак числа, с адекватным количеством. Это, как правило, числа и цифры: 1, 2, 3. Период восприятия множеств и называния количе­ства элементов числом (без пересчета) исследователи относят к воз­расту 2—4 года (В. А. Лай, К. Ф. Лебединцев, Д. Л. Волковский, Н. И.Чуприкова и др.). В психологии такое явление называется субитацией чисел (узнавание количества без счета).

Современным психологом Н. И. Чуприковой проводились эксперименты, в которых дети, не умеющие считать, наблюдали за тем, как это делает кукла, находили ошибки, допущенные ею. По мнению автора исследования, освоению счета предшествуют: стабильность, неизменность, устойчивость порядка числитель­ных; соотнесение объекта только с одним числительным; опреде­ление общего количества последним произнесенным числитель­ным; сосчитывание предметов в любом порядке.

Интерес детей 2—3-х лет к называнию количества числом был выявлен в исследовании В. В.Даниловой (1973).

Вторая идея, на которой базируется классическая теория, со­стоит в понимании числа как результата счета. Эта идея наибо­лее полно представлена в исследованиях А. М. Леушиной, Н. А. Менчинской и др. «Целостное» восприятие множеств (без сосчитывания) не признавалось данными исследователями и за­менялось «аналитическим» — выполнением действий наложения и приложения в процессе сравнения.

Н. А. Менчинская (психолог), проследившая в 50—60-е гг. XX в. процесс развития понятия ребенка о числе, считала «лож­ным» вопрос о том, что является основой возникновения этого понятия: восприятие множества или счет. По ее мнению, обе точки зрения имеют место. Следует, советовала Н. А. Менчин­ская, исследовать и реализовывать практически соотношение вос­приятия множеств и счета на различных этапах овладения ребен­ком понятием числа.

А. М. Леушина на основе результатов экспериментального ис­следования (1956) разработала содержание дочислового периода обучения детей 3—4-х лет (сравнение множеств преимущественно путем наложения и приложения, увеличение и уменьшение их) и периода развития у детей в возрасте от 4-х лет числовых представ­лений (освоение счета, сравнения групп предметов по числу, уве­личения и уменьшения чисел, состава чисел). В таком подходе к развитию количественных и числовых представлений в методике обучения не допускалась возможность совмещения взглядов на развитие представлений о числе как «образе» и результате счета. Предлагалось формировать у детей представление о числе в про­цессе сосчитывания, отсчитывания заданного в образце или на­званном числе количества, воспроизведения чисел.

Реализацию идеи совмещения двух путей познания ребенком чисел еще в 1923 г. разрешил К. Ф. Лебединцев (в результате многолетних наблюдений за развитием числовых представлений у детей). Он утверждал, что на первоначальном этапе познания чисел ведущим выступает восприятие множества («образ числа»). Постоянно сталкиваясь с необходимостью различать две руки, ноги, ребенок овладевает «образом» этого числа и переносит его на другие множества. Так познаются числа: 1, 2, 3, 4. Далее, за пределами этих совокупностей, познание чисел осуществляется на основе счета, который постепенно вытесняет восприятие мно­жеств. Ребенок учится использовать числовой ряд для счета, ори­ентироваться в последовательности чисел.

Освоение числового ряда, по мнению Н. И. Чуприковой, изу­чавшей ступени дифференцированного овладения последователь­ностью чисел, начинается очень рано, с отличения числительных от других слов. Дети 2-х лет в ответ на просьбу «Сосчитай, сколько будет», как правило, называют числительные, но вне какого-либо порядка. В дальнейшем они осваивают последовательность чисел; постепенно увеличивается стабильная часть последовательности; уменьшается количество таких ошибок, как нарушение порядка и пропуск чисел.

При счете дети допускают ошибки, затрудняются в установле­нии однозначного соответствия между предметами и числами. Дети на этой (первой) ступени освоения еще не владеют навыками счета.

В дальнейшем, овладевая счетом, дети осваивают связь между числами (смежными элементами). Однако связи эти только пря­мые, ребенок не может начать называние чисел с любого числа, а только с самого начала последовательности (вторая ступень).

На третьей ступени освоения счета ребенок последовательно называет числа, начиная с любого числа; называет числа в обрат­ном порядке; называет число, которое следует за заданным, и то, которое предшествует ему.

Исследователи выделяют еще одну более высокую ступень, на которой для ребенка предметом счета становятся сами числитель­ные, элементы числового ряда. Теперь он может отсчитать опре­деленное число элементов (например, начиная с 6, отсчитать 3), назвать числа (цифры), используемые при этом.

В 30-е, а затем и в 60—70-е гг. XX в. разрабатывалось положе­ние об особой роли деятельности измерения в освоении чисел детьми дошкольного и младшего школьного возраста.

Согласно теории развития представлений о числе на основе из­мерения, мерка, применяемая при этом, используется для выделе­ния единиц (Л. С. Георгиев, 1960). Мерка является единицей из­мерения, а полученное число — результатом. Согласно этой тео­рии, представление о числе начинает складываться у ребенка с представления о мере.

Разработка методик развития у детей числовых представлений с позиций идей теории множеств началась в 50-е гг. XX в. В теории множеств Г. Кантора понятие числа (его количественное значение) базируется на равномощности нескольких совокупностей. Из этого следует подход к методике освоения числа как общего неизменного признака ряда равномощных множеств. Это ведет к осмыслению равночисленности групп предметов (равны по количеству, столько же). Используются равномощные множества: 4 игрушки, 4 книги, 4 ребенка. Все эти числа обозначаются цифрой 4, что подводит ре­бенка 4—5 лет к обобщению групп предметов по числу (всех по 4).

В методике обучения дети сначала осваивают действия с мно­жествами и свойствами предметов: сравнивают, уравнивают по количеству, соотносят, а затем переходят к усвоению чисел.

Множества дошкольники создают или перечислением всех его элементов по одному разу (один, еще один...) или по характеризу­ющему эти элементы общему свойству (все квадратные; все лежат на одной полке).

По мнению Г. Фройденталя, в основе освоения детьми чисел особое место занимает порядковое число, «проговаривание по­рядка». Натуральное число рассматривается при этом и как харак­теристика порядка элементов в множестве. По мнению автора этих мыслей, именно порядковое число ведет к количественному, чем и объясняется значение считалок в развитии у детей числовых представлений. Осваивая порядок номеров домов, телефонов, дети познают принципы нумерации.

Согласно теории Ж. Пиаже, освоение чисел происходит у ре­бенка в результате синтеза логических операций, таких как клас­сификация и сериация. Число рассматривается как связанное не с конкретными предметными действиями, а с отвлеченными от­ношениями на уровне логических операций. К таким операциям относится, кроме классификации и сериации, принцип сохране­ния количества и величины. Освоению чисел предшествуют и со­путствуют упражнения в определении отношений соответствия (один к одному), порядка следования (что за чем следует), тожде­ства (такой же, как.., неизменности (или изменения)) и т.д.

Особенности познания количественных отношений, чисел и цифр в дошкольном возрасте. Зависимость восприятия численности от пространственно-качественных особенностей множеств

Развитие количественных и числовых представлений у детей вне обучения включает:

• овладение манипул яти вными действиями с предметами (ран­ний и младший дошкольный возраст);

• составление групп предметов, уменьшение и увеличение ко­личества предметов в группе (2—4 года);

• узнавание количества без счета (явление субитации чисел) (2—3 года);

• отнесение числа (слова-числительного) к количеству предме­тов (2—4 года);

• стремление считать предметы и обозначать их цифрой (2,5—3,5 года);

• увеличение и уменьшение количества предметов;

• овладение счетом (3—4 года);

• количественная оценка непрерывных величин (длины, объема жидкости) (3—5 лет);

• самобытность освоения вычислений.

Уже в раннем возрасте у детей накапливаются представления о совокупностях, состоящих из однородных и разнородных пред­метов. Они овладевают рядом практических действий (расклады­вание в ряд, накладывание одного предмета на другой и др.), на­правленных на восприятие численности множества предметов.

Дети первого и второго года жизни осваивают способы дейст­вий с группами однородных предметов (шарики, пуговицы, коль­ца и др.). Они их перебирают, перекладывают, пересыпают, вновь собирают, раскладывают по горизонтали, в виде кривой линии; выполняют более сложные действия: группируют предметы раз­ной численности по форме и цвету.

Первоначальное формирование представлений о множествен­ности предметов (много) и единичности (один) происходит очень рано (на втором, третьем годах жизни). Показателем этого явля­ется различение детьми единственного и множественного числа.

На втором году жизни дети начинают понимать смысл слов много, мало при различии между группами в два предмета. Однако слова много и мало не имеют для них четкой количественной ха­рактеристики. Слово много ассоциируется у них и со словом боль­шой, а слово мало — со словом маленький. Слово много относят как к совокупности предметов, так и к их размеру. Так, при воспри­ятии и оценке совокупности, состоящей из больших и маленьких предметов (четыре маленькие машины и одна большая), слово мало они произносили, показывая на маленькие машины, а слово много относили к одной большой машине. Следовательно, коли­чественные представления у детей еще не отдифференцировались от пространственных (В. В. Данилова).

При относительно раннем практическом уровне умения разли­чать совокупности с контрастной численностью элементов слово мало в активном словаре детей появляется позже, чем слово много.

Итак, количественная сторона в совокупности предметов не является еще особым признаком, значимым для детей второго года жизни (В. В. Данилова). В этом возрасте происходит воспри­ятие множества предметов как неопределенной множественно­сти, появляется способность различать по смыслу слова один и много, происходит активное овладение грамматическими форма­ми единственного и множественного числа.

На третьем году жизни зарождается тенденция к умению раз­личать разные по численности группы предметов. Слова один, много, мало дети соотносят с определенным количеством предме­тов, выполняют действия в ответ на просьбу взрослых: «Принеси один шарик», «Дай мне много картинок» и т. д.

К концу третьего года дети овладевают умением дифферен­цировать не только предметные совокупности, но и множества звуков.

У детей конца второго — начала третьего года жизни появля­ется стремление самим создавать совокупности предметов.

В этом возрасте наблюдается склонность «сравнивать» пред­меты наложением. Но движения детей еще не точны, к тому же они не видят отношений между сравниваемыми группами пред­метов, их интересует главным образом сам процесс дробления на отдельные предметы и их объединение.

Когда дети накладывают пуговицы на карточку с пятью нари­сованными пуговицами, они обычно раскладывают все имеющие­ся у них пуговицы. При этом они действуют двумя руками в опре­деленном направлении; от середины — к краям, от краев — к се­редине, постепенно переходя к действиям одной рукой в удобном направлении. Иногда при выполнении аналогичных заданий дети ограничиваются фиксацией лишь крайних, наиболее легко и зримо воспринимаемых предметов. Так, ребенок кормит лишь первую и последнюю в ряду куклу, не обращая внимания на про­межуточных между ними. Ребенку предлагают убрать все кубики в коробку или отнести все ложки. Он же ограничивается лишь тем, что убирает несколько кубиков и относит несколько ложек.

К концу второго года жизни дети уже небезразличны к словам сколько и посчитай. Такие слова стимулируют у них подражатель­ные взрослым действия счета. При этом малыши называют слу­чайные числительные.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2017-12-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: