Тема 1.4. Приборы для измерения электрического тока, напряжения




По роду тока приборы делятся на: постоянного, переменного, постоянного и переменного тока.

По классу точности (ГОСТ 1845 – 59) приборы делятся на 8 классов: 0,05; 0,1; 0,2; 0,5; 1; 1,5; 2,5; 4. Приборы класса точности 0,05 и 0,1 являются эталонными (образцовыми), класса 0,2 и 0,5 – лабораторными, а класса 1, 1,5 и 2,5 – техническими.

По принципу действия приборы делятся на: магнитоэлектрические, электромагнитные, электродинамические (ферродинамические), индукционные, тепловые, термоэлектрические, вибрационные и др.

Степень защищенности от внешних магнитных полей обозначается цифрами I, II, III, IV. Меньшая цифра соответствует лучшей защите. Условия работы при соответствующих температурах и влажности обозначаются буквами:

А – приборы нормально работают при относительной влажности до 80% и температуре от + 10 до + 35 С;

Б – нормально работают при относительной влажности до 80% и температуре от – 20 до+50 С;

В – нормально работают при относительной влажности до 98% и температуре от – 40 до+60 С.

По способу получения отсчета приборы бывают: непосредственной оценки и приборы сравнения. При технических измерениях применяются приборы непосредственной оценки, как более простые, дешевые и требующие мало времени для измерения. Приборы сравнения применяются для более точных измерений электрических величин и неэлектрических – электрическими методами.

Разнообразие систем электроизмерительных приборов вызвано разными условиями и требованиями при измерении различных электрических и неэлектрических величин.

 

АНАЛОГОВЫЕ ПРИБОРЫ

 

Для измерения напряжения, силы тока и сопротивления на постоянном токе применяются аналоговые магнитоэлектрические приборы с постоянным магнитом и многовитковой подвижной частью. Такие приборы стрелочного типа характеризуются погрешностью от 0,5 до 5%.

 

ЦИФРОВЫЕ ПРИБОРЫ

 

Классификация приборов для измерения напряжения – вольтметры, образующие группу В. Среди приборов этой подгруппы выделяют вольтметры постоянного тока (В2), переменного (В3), импульсного тока (В4), фазочувствительные (В5), селективные (В6), универсальные (В7), измеритель отношения, разности и нестабильности напряжений (В8), преобразователь напряжений (В9).

Цифровые вольтметры и мультиметры. Цифровые вольтметры и мультиметры измеряют квазистатическое значение величины и указывают его в цифровой форме. Вольтметры непосредственно измеряют только напряжение, обычно постоянного тока, а мультиметры могут измерять напряжение постоянного и переменного тока, силу тока, сопротивление постоянному току и иногда температуру. Эти самые распространенные контрольно-измерительные приборы общего назначения с погрешностью измерения от 0,2 до 0,001% могут иметь 3,5- или 4,5-значный цифровой дисплей. "Полуцелый" знак (разряд) - это условное указание на то, что дисплей может показывать числа, выходящие за пределы номинального числа знаков. Например, 3,5-значный (3,5-разрядный) дисплей в диапазоне 1-2 В может показывать напряжение до 1,999 В.

Во всех цифровых измерительных приборах (кроме простейших) используются усилители и другие электронные блоки для преобразования входного сигнала в сигнал напряжения, который затем преобразуется в цифровую форму аналого-цифровым преобразователем (АЦП). Число, выражающее измеренное значение, выводится на светодиодный (СИД), вакуумный люминесцентный или жидкокристаллический (ЖК) индикатор (дисплей). Прибор обычно работает под управлением встроенного микропроцессора, причем в простых приборах микропроцессор объединяется с АЦП на одной интегральной схеме. Цифровые приборы хорошо подходят для работы с подключением к внешнему компьютеру. В некоторых видах измерений такой компьютер переключает измерительные функции прибора и дает команды передачи данных для их обработки.

Аналого-цифровые преобразователи. Существуют три основных типа АЦП: интегрирующий, последовательного приближения и параллельный. Интегрирующий АЦП усредняет входной сигнал по времени. Из трех перечисленных типов это самый точный, хотя и самый "медленный". Время преобразования интегрирующего АЦП лежит в диапазоне от 0,001 до 50 с и более, погрешность составляет 0,1-0,0003%. Погрешность АЦП последовательного приближения несколько больше (0,4-0,002%), но зато время преобразования - от 10мкс до 1 мс. Параллельные АЦП - самые быстродействующие, но и наименее точные: их время преобразования порядка 0,25 нс, погрешность - от 0,4 до 2%.

Приборы для измерения силы тока образуют подгруппу А-амперметры. Внутри этой подгруппы выделяют амперметры постоянного тока (А2), переменного тока (А3), универсальные (А7) и преобразователи тока (А9).

Для измерения тока амперметр включают последовательно в разрыв измеряемой цепи. Амперметр любой системы можно представить в виде следующей эквивалентной схемы (рис. 4.1а), где LА, CА, RА, - индуктивность, емкость, сопротивление внутренней цепи амперметра. Очевидно, что включение амперметра в измеряемую цепь окажет на нее параметрическое и энергетическое влияние. Параметрическое влияние тем значительнее, чем выше частота и больше LА и CА, энергетическое – чем больше RА, так как при этом возрастет потребление мощности от измеряемой цепи.

Рисунок 4.1- Измерение тока высокой частоты:

а) эквивалентная схема амперметра;

б) включение амперметра;

в) структурная схема амперметра с преобразованием.

Для измерения тока высокой частоты следует использовать схему с преобразованием (рис 4.1 в), где сначала ток высокой частоты преобразуется в постоянный, который измеряют магнитоэлектрическим индикатором – микро или миллиамперметром. Преобразование осуществляют либо за счет теплового действия тока, либо путем его выпрямления. Поэтому высокочастотные амперметры представляют собой совокупность индикатора и преобразователя (рис. 4.1в), и называется термоамперметрами или выпрямителями.

Термоамперметр состоит из термоэлектрического преобразователя и магнитоэлектрического индикатора, шкалу которого градуируют в значениях измеряемого тока. Термоэлектрический преобразователь представляет собой тонкую проволоку из тугоплавкого металла, называемую нагревателем, и одну или несколько термопар, приваренных к его середине. Такой термопреобразователь называется контактным (рис.4.2.а). При прохождении измеряемого тока через нагреватель, место контакта нагревается и термопары нагреваются до температуры tº1, а холодный слойbостается при температуре окружающей средыtº0. В результате, в термопаре возникает термоЭДС Ет, пропорциональная разности температур в месте контакта с нагревателем и внешних концов термопары. Индикатор присоединен к этим концам термопары и по нему протекает ток, пропорциональный квадрату среднеквадратического значения измеряемого тока:

Iи =Eт/(Rт +Rн), (4.7)

где Rт, Rн – сопротивления термопары и индикатора, т.о., шкала термоэлектрического прибора близка к квадратичной.

На рис.4.2.б приведена схема бесконтактного термоэлектрического преобразователя. В контактном преобразователе имеется гальваническая связь между нагревателем и термопарой, т.е., между входной и выходной цепями, что не всегда допустимо. В бесконтактном преобразователе, преобразователь отделен от термопары из стекла или керамики, либо воздушной прослойкой.

Рисунок 4.2.- Термоэлектрический преобразователь

Термоэлектрические измерительные приборы получили распространение преимущественно для измерения токов. В качестве вольтметров они практически не применяются, так как их входное сопротивление мало. К достоинствам приборов термоэлектрической системы можно отвести высокую чувствительность к измеряемому току, широкий диапазон частот, а также возможность измерения средних квадратических значений токов произвольной формы. Недостатком термоэлектрических приборов является неравномерность шкалы, зависимость показаний от температуры окружающей среды и большая инерционность термопреобразований. Термоэлектрические приборы очень чувствительны к перегрузкам. В зависимости от назначения они имеют различные пределы измерения *(от 1 мА до 50 А), классы точности (от 0,1 до 2,5) и частный диапазон (от 45 Гц до сотен мегагерц). Термоамперметры обозначаются буквой «Т» и номером модели: Т20, Т29.



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2022-10-12 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: