Функции человека и машины в системах управления




Основные понятия и принципы моделирования.

Тип модели зависит от информационной сущности моделируемой системы, от связей и отношений ее подсистем и элементов, а не от ее физической природы.

Математические описания (модели) динамики эпидемии инфекционной болезни, радиоактивного распада, усвоения второго иностранного языка, выпуска изделий производственного предприятия и т. д. являются одинаковыми с точки зрения самого описания, хотя процессы различны.

Границы между моделями различных типов или же отнесение модели к тому или иному типу часто весьма условны. Можно говорить о различных режимах использования моделей — имитационном, стохастическом и т. д. Все основные типы моделей, возможно, за исключением некоторых натурных — системно-информационные (инфосистемные) и информационно-логические (инфологические). В узком понимании информационная модель — это модель, описывающая, изучающая, актуализирующая информационные связи и отношения в исследуемой системе. В еще более узком понимании информационная модель — это модель, основанная на данных, структурах данных, их информационно-логическом представлении и обработке. Как широкое, так и узкое понимание информационной модели необходимы, определяются решаемой проблемой и доступными для ее решения ресурсами, в первую очередь информационно-логическими.

Основные свойства любой модели:

  • конечность — модель отображает оригинал лишь в конечном числе его отношений и, кроме того, ресурсы моделирования конечны;
  • упрощенность — модель отображает только существенные стороны объекта и, кроме того, должна быть проста для исследования или воспроизведения;
  • приблизительность — действительность отображается моделью грубо, или приблизительно;
  • адекватность моделируемой системе — модель должна успешно описывать моделируемую систему;
  • наглядность, обозримость основных свойств и отношений;
  • доступность и технологичность для исследования или воспроизведения;
  • информативность — модель должна содержать достаточную информацию о системе (в рамках гипотез, принятых при построении модели) и давать возможность получить новую информацию;
  • сохранение информации, содержавшейся в оригинале (с точностью рассматриваемых при построении модели гипотез);
  • полнота — в модели должны быть учтены все основные связи и отношения, необходимые для обеспечения цели моделирования;
  • устойчивость — модель должна описывать и обеспечивать устойчивое поведение системы, если даже та вначале является неустойчивой;
  • замкнутость — модель учитывает и отображает замкнутую систему необходимых основных гипотез, связей и отношений.

Модель должна строится так, чтобы она наиболее полно воспроизводила те качества объекта, которые необходимо изучить в соответствии с поставленной целью. Во всех отношениях модель должна быть проще объекта и удобнее его для изучения. таким образом, для одного и того же объекта могут существовать различные модели, классы моделей, соответствующие различным целям его изучения.

Необходимым условием моделирования является подобие объекта и его модели.

Построенные модели необходимо исследовать и решить. Но прежде введем некоторые понятия.

Операция

- всякое мероприятие (система действий), объединенных единым замыслом и направлением к достижению какой-либо цели.

Операция есть всегда управляемое мероприятие, т.е. от нас зависит, каким способом выбрать некоторые параметры, характеризующие ее организацию.

Всякий определенный набор зависящих от нас параметров называется решением. Решения могут быть удачными и неудачными, разумными и неразумными.

Оптимальными называются решения, по тем или иным признакам предпочтительные перед другими. Иногда в результате исследования можно указать одно единственное строго оптимальное решение, но гораздо чаще выделить область практически равноценных оптимальных решений, в пределах которой может быть сделан выбор.

Параметры, совокупность которых образует решение, называется элементами решения.

В качестве элементов решения могут фигурировать различные числа, векторы, функции, различные признаки и т.д.

 

6. 5. Кибернетика. Управляемые системы. Функции человека и машины в системах управления.

Кибернетика

В изданной “Энциклопедии кибернетики” говорится, что это “... наука об общих законах получения, хранения, передачи и преобразования информации в сложных управляющих системах.

Таким образом, кибернетика и информатика являются, скорее всего, единой наукой.

Кибернетические разделы информатики богаты подходами и моделями в исследовании разнообразных систем и используют в качестве аппарата многие разделы фундаментальной и прикладной математики.

Классическим и до известной степени самостоятельным разделом кибернетики считают исследование операций. Под этим термином понимают применение математических методов для обоснования решений в различных областях целенаправленной человеческой деятельности.

Решение есть выбор из ряда возможностей, имеющихся у ответственного лица. Решения могут быть удачными и неудачными, разумными и неразумными. Оптимальными называют решения, по тем или другим принципам более предпочтительные, чем другие. Цель исследования операций - математическое (количественное) обоснование оптимальных решений.

Исследование операций включает в себя следующие разделы:

1) математическое программирование (обоснование планов, программ хозяйственной деятельности); оно включает в себя относительно самостоятельные разделы: линейное программирование, нелинейное программирование, динамическое программирование (во всех этих названиях термин “программирование” возник исторически и не имеет отношения к программированию ЭВМ);

2) теорию массового обслуживания, опирающуюся на теорию случайных процессов;

3) теорию игр, позволяющую обосновывать решения, принимаемые в условиях неполноты информации.

Еще одним классическим разделом кибернетики является распознавание образов, возникшее из задачи моделирования в технических системах восприятия человеком знаков, предметов и речи, а также формирования у человека понятий (обучение в простейшем, техническом смысле). Этот раздел в значительной мере возник из технических потребностей робототехники.

Вершиной кибернетики (и всей информатики в целом) является раздел, посвященный проблемам искусственного интеллекта. Большинство современных систем управления обладают свойством принятия решений - свойством интеллектуальности, т.е. в них смоделирована интеллектуальная деятельность человека при принятии решений.

Управляемые системы

Несмотря на такое многообразие задач, решаемых в разных разделах кибернетики, разнообразие моделей, подходов и методов, кибернетика остается единой наукой благодаря использованию общей методологии, основанной на теории систем и системном анализе.

Система - это предельно широкое, начальное, не определяемое строго понятие. Предполагается, что система обладает структурой, т.е. состоит из относительно обособленных частей (элементов), находящихся, тем не менее, в существенной взаимосвязи и взаимодействии. Существенность взаимодействия состоит в том, что благодаря ему элементы системы приобретают все вместе некую новую функцию, новое свойство, которыми не обладает ни один из элементов в отдельности. В этом состоит отличие системы от сети, также состоящей из отдельных элементов, но не связанных между собой существенными отношениями

Кибернетика как наука об управлении изучает не все системы вообще, а только управляемыесистемы. Зато область интересов и приложений кибернетики распространяется на самые разнообразные биологические, экономические, социальные системы.

Одной из характерных особенностей управляемой системы является возможность переходить в различные состояния под влиянием различных управляющих воздействий. Всегда существует некое множество состояний системы, из которых производится выбор предпочтительного состояния.

Отвлекаясь от конкретных особенностей отдельных кибернетических систем и выделяя общие для некоторого множества систем закономерности, описывающие изменение их состояния при различных управляющих воздействиях, мы приходим к понятию абстрактной кибернетической системы. Ее составляющими являются не конкретные предметы, а абстрактные элементы, характеризующиеся определенными свойствами, общими для широкого класса объектов.

На основе введенных понятий можно определить понятие “управление”. Управление - это воздействие на объект, выбранное из множества возможных воздействий на основе имеющейся для этого информации, улучшающее функционирование или развитие данного объекта.

В системах управления решаются четыре основных типа задач управления: 1) регулирование (стабилизация), 2) выполнение программы, 3) слежение и 4) оптимизация.

Системы, в которых для формирования управляющих воздействий не используется информация о значениях, которые управляемые величины принимают в процессе управления, называются разомкнутыми системами управления.

Напротив, в замкнутых системах управления для формирования управляющих воздействий используется информация о значении управляемых величин. Структура такой системы показана на рис.3.

Обратная связь является одним из важнейших понятий кибернетики, помогающим понять многие явления, которые происходят в управляемых системах различной природы. Обратную связь можно обнаружить при изучении процессов, протекающих в живых организмах, экономических структурах, системах автоматического регулирования. Обратная связь, увеличивающая влияние входного воздействия на управляемые параметры системы, называется положительной, уменьшающая влияние входного воздействия - отрицательной.

Положительная обратная связь используется во многих технических устройствах для усиления, увеличения значений входных воздействий. Отрицательная обратная связь используется для восстановления равновесия, нарушенного внешним воздействием на систему.

Функции человека и машины в системах управления

Хорошо изученной сферой применения кибернетических методов является технологическая и производственная сфера, управление промышленным предприятием. Задачи, возникающие в управлении предприятием среднего и большого масштаба, уже весьма сложны, но допускают решение с использованием электронно-вычислительных машин. Системы управления хозяйством предприятий или территорий (регионов, городов), использующие ЭВМ для переработки и хранения информации, получили название автоматизированных систем управления (АСУ). По своему характеру такие системы являются человеко-машинными, т.е. наряду с использованием мощных компьютеров предполагающими наличие в них человека с его естественным интеллектом. В человеко-машинных системах предполагается следующее разделение функций человека и машины: машина хранит и перерабатывает большие массивы информации, осуществляет информационное обеспечение принятия решений человеком; человек принимает управленческие решения.

Чаще в человеко-машинных системах компьютеры выполняют рутинную, нетворческую, трудоемкую переработку информации, освобождая человеку время для творческой деятельности. Однако целью развития компьютерной (информационной) технологии управления является полная автоматизация деятельности, включающая частичное или полное освобождение человека от необходимости принятия решений. Это связано не только со стремлением разгрузить человека, но и с тем, что развитие техники и технологий привело к ситуациям, когда человек в силу присущих ему физиологических и психических ограничений просто не успевает принимать решения в реальном масштабе времени протекания процесса, что грозит катастрофическими последствиями. Примеры - необходимость включения аварийной защиты ядерного ректора, реакция на события, проистекающие при запусках космических аппаратов и т.д.

Система, заменяющая человека, должна будет обладать интеллектом, в какой-то мере подобным человеческому - искусственным интеллектом. Исследовательское направление в области систем искусственного интеллекта также относится к кибернетике.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-04-14 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: