Глава 2. Реализация сингулярного разложения




Алгоритмы

QR –алгоритм начинается с разложения матрицы по Грамму-Шмидту , затем меняются местами сомножители: Эта матрица подобна первоначальной, Этот процесс продолжается, причем собственные значения не изменяются:

Эта формула описывает QR –алгоритм без сдвигов. Обычно время которое тратится на такой процесс пропорционально кубу размерности матрицы – n 3. Необходимо процесс ускорить, для чего используется предварительное приведение матрицы А к форме Хессенберга [8] а также используется алгоритм со сдвигом. Форма Хессенберга представляет из себя верхнюю треугольную матрицу (верхняя форма Хессенберга) у которой сохранена одна диагональ ниже главной, а элементы ниже этой диагонали равны нулю. Если матрица симметрична, то легко видеть, что матрица Хессенберга превращается в трехдиагональную матрицу [9]. При использовании матрицы Хессенберга время процесса пропорционально n 2, а при использовании трехдиагональной матрицы – n.

Можно использовать другие соотношения

где Qs – унитарная, а Ls – нижняя треугольная матрица. Такой алгоритм носит название QL –алгоритма.

В общем случае, когда все собственные значения матрицы различны, последовательность матриц As имеет пределом нижнюю треугольную матрицу , диагональные элементы которой представляют собой собственные значения матрицы А, расположенные в порядке возрастания их модулей. Если матрица А имеет кратные собственные значения, то предельная матрица не является треугольной, а содержит диагональные блоки порядка p, соответствующие собственному числу кратности p.

В общем случае, наддиагональный элемент матрицы As на s -ом шаге асимптотически равен , где kij – постоянная величина. Сходимость QL –алгоритма вообще говоря недостаточна. Сходимость можно улучшить, если на каждом шаге вместо матрицы As использовать матрицу As - ksI (QL –алгоритм со сдвигом). Последовательность вычислений в этом случае описывается следующими соотношениями:

которые определяют матрицу . При этом асимптотическое поведение элемента определено соотношением , а не , как прежде. Если сдвиг ks выбрать близко к величине (наименьшее собственное значение), то в пределе внедиагональные элементы первой строки будут очень быстро стремиться к нулю. Когда ими можно пренебречь, элемент с рабочей точностью равен , остальные являются собственными значениями оставшейся матрицы n- 1 - го порядка. Тогда, если QL –алгоритм выполнен без ускорения сходимости, то все равно , и поэтому автоматически можно выделить величину сдвига ks.

Если матрица А эрмитова, то очевидно, что и все матрицы Аs эрмитовы; если А действительная и симметричная, то все Qs ортогональны и все Аs действительны и симметричны.

Реализация разложения

Таким образом, разложение производится в два этапа. Сначала матрица А посредством двух конечных последовательностей преобразований Хаусхолдера где , приводится к верхней двухдиагональной форме следующего вида:

Далее реализуется итерационный процесс приведения двухдиагональной матрицы J 0 к диагональной форме, так что имеет место следующая последовательность: где а Si и Ti – диагональные матрицы.

Матрицы Ti выбираются так, чтобы последовательность матриц сходилась к двухдиагональной матрице. Матрицы же Si выбирают так, чтобы все Ji сохраняли двухдиагональную форму. Переход осуществляется с помощью плоских вращений (10) – преобразований Гивенса. Отсюда, где

а матрица вычисляется аналогично с заменой на .

Пусть начальный угол произволен, однако следующие значения угла необходимо выбирать так, чтобы матрица Ji+ 1 имела ту же форму, что и Ji. Таким образом не аннулирует ни одного элемента матрицы, но добавляет элемент ; аннулирует но добавляет ; аннулирует но добавляет и т.д., наконец, аннулирует и ничего не добавляет.

Этот процесс часто называют процессом преследования. Так как , то , и Mi+ 1 – трехдиагональная матрица, точно так же, как и Mi. Начальный угол можно выбрать так, чтобы преобразование было QR –преобразованием со сдвигом, равным s.

Обычный QR –алгоритм со сдвигом можно записать в следующем виде:

где – верхняя треугольная матрица. Следовательно, . Параметр сдвига s определяется собственным значением нижнего минора (размерности 2´2) матрицы Mi. При таком выборе параметра s метод обладает глобальной и почти всегда кубичной сходимостью.



Поделиться:




Поиск по сайту

©2015-2025 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-06-03 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: