ЛЕКЦИЯ ПЭ № 6 От 10.11.2016 г (и от 18.11.)
Фотоэлектронные и полупроводниковые приборы без Р-N перехода и их значение в электронике
1. Фотоэлектронные приборы: фоторезисторы, фото и светодиоды
2. Приборы без Р-N перехода: термо, тензо и магниторезисторы, варисторы, датчики Холла.
Билеты № 16, 17, 18.
Фотоэлектронные полупроводниковые приборы: фоторезисторы, фото и светодиоды
Фотоэлектронные (ФЭ) –это приборы, преобразующие энергию света (оптического излучения) в электрическую. В основном используются ультрафиолетовое (), видимое (
) и инфракрасное (
) излучения.
Работа ФЭ основана на внутреннем и внешнем фотоэффектах.
Внутренний фотоэффект заключается в том, что энергия света разрывает ковалентные связи атомов с электронами и они, освобождаясь, переходят из валентной зоны (ВЗ) в зону проводимости (ЗП), обусловливая электропроводность.
При этом, согласно теории Эйнштейна, энергия фотонов света Wф должна превышать ширину запрещенной зоны полупроводника, в связи с чем фотоэффект возможен при длине волны
, меньшей некоторого граничного значения λгр, называемого «красной границей:
λф < λгр= с / f = h с / ΔWзз ≈ 1,23/ ΔWзз (мкм)
с – скорость света () в вакууме;
– постоянная Планка;
– ширина запрещенной зоны, ограниченная дном ЗП (Wc) и потолком ВЗ (Wv) в электрон-вольтах (эВ) – см. ниже рисунок.
Энергетическая модель полупроводника в теории твердого тела
На основе внутреннего фотоэффекта разработано большое количество полупроводниковых ФЭ приборов: фоторезисторы, фотодиоды, фото-транзисторы, светодиоды, фототиристоры, оптроны, фотоемкости, фотоваристоры и т. д.
Внешний фотоэффект также широко используется в т.н. фотоэмиссионных ФЭ-приборах: в вакуумных фотоумножителях, передающихтелевизионных трубках (супериконоскоп, суперортикон) и др. Этот эффект заключается в том, что энергия фотона расходуется на преодоление работы выхода
из вещества и приобретение электроном кинетической энергии.
Фоторезисторы
Фоторезистор – это ФЭ прибор, в котором в результате внутреннего фотоэффекта при его освещении светом возрастает электропровод-ность.
Внешний вид, обозначение и схема включения фоторезистора
Конструктивно - это тонкая пластинка или пленка из п/пр соединений кадмия, висмута или свинца 1 с двумя токопроводящимиконтактами 2, и укрепленная на изоляционной подложке 3. Для защиты от влаги поверхность полупроводника покрывают прозрачным лаком, а саму пластинку помещают в пластмассовый корпус с окном для проникновения света. Он включается в любой полярности ЭДС.
Его фототок равен разности тока Iс при освещении и темнового тока Im (без освещения):
;
При освещении в зависимости от светового потока уменьшение сопротивления достигается в 500–1000 раз в диапазоне частот от 10 Гц до 10 кГц. Основное применение фоторезисторов – в качестве датчиков освещённости в измерительных и информационных устройствах автоматики [12].
Фотодиоды
Фотодиод (ФД) – это П-П диод, в котором в результате внутреннего фотоэффекта при воздействии света в p-nпереходе возникает односторонняя фотопроводимость. Конструктивно - это кристалл с p-n переходом, перпендикулярно плоскости которого направлен световой поток.
У него два режима работы: фотогенераторный (иногда– запираю-щий, фотогальванический, фотовольтаический, вентильный) – без внешнего источника питания, и фотодиодный (иногда фотопреобра-зовательный) – с внешним источником.
В первом случае фотодиод используется как фотоэлемент, гене-рирующий при его освещении электрическую энергию (фото-ЭДС в солнечных батареях), а во втором – в разнообразных фотодатчиках устройств автоматики.
В ф-генераторном режиме при освещении р-п перехода возраста-ют концентрации соответствующих зарядов p и n областей, высота потенциального барьера сужается, возникает фото-ЭДС и через нагрузку течёт ток, определяемый выражением:
Структура и схема включения ФД в ф-генераторном (а) и фотодиодном (б) режимах
где – напряжение на зажимах фотодиода, В;
Кл – заряд электрона (в показателе степени экспоненциального члена).
ВАХ фотодиода при различных значениях светового потока
Квадрант IV его ВАХ – фотогенераторный, а квадрант III - фотодиодный
При этом пересечение кривых с осью соответствует режиму ХХ, а с осью
– режиму КЗ выводов фотодиода; кривая, проходящая через начало координат, соответствует отсутствию освещения и называется темновой ВАХ, она ничем не отличается от ВАХ обычного полупроводникового диода. Максимальное значение фото-ЭДС достигается равным к.р.п. и находится в пределах
В у селеновых и кремниевых фотодиодов и порядка 0.87 В – у фотодиодов из арсенида галлия.
В ф-диодном режиме (квадрант III ВАХ) рабочим участком ф-диода яв-ляется область обратных напряжений (от источника ЭДС) в пределах от десятых долей до единиц вольт. Из ВАХ видно, что при увеличении светового потока возрастает фототок, равный разности встречных токов, текущих через p-n переход:
Применение: Ф-диоды широко применяются в обоих режимах.
В ф-диодном - в устройствах ввода и вывода информации со скоростями считывания информации до 2000 знаков в секунду; датчиках регистрирующих и измерительных приборов фотометрии, в киноаппаратуре, фототелеграфии; для автоматизации производственных процессов; в быстро развивающейся оптоэлектронике. В фотогенераторном режиме - в солнечных элементах, входящих в состав солнечных батарей космических кораблей. В настоящее время ведутся разработки наземных солнечных батарей. Наиболее перспективны с высоким к.п.д полупроводники : кремний, фосфид индия, арсенид галлия, сульфид кадмия, теллурид кадмия и др. К.п.д. кремниевых солнечных элементов составляет около 20 %, а плёночных - даже более20 %. Также, кроме к.п.д., важнейший их технический параметр: отношение выходной мощности к массе и площади, занимаемой солнечной батареей, которые достигают значений 200 Вт / кг и 1 кВт / м 2 соответственно. Внутренний фотоэффект используется также в более сложных фотоэлектронных приборах для увеличения их фоточувствительности – фототранзисторах и фототиристорах, рассмотренных, например, в [8].
Светодиоды
Светоизлучающим диодом (светодиодом) называется ФЭ прибор, излу-чающий свет на основе инжекционной электролюминесценции p-n-перехода при рекомбинации электронов и дырок при подаче на диод достаточно больших прямых токов. Наиболее эффективны p-n-переходы на основе ПП МЭТ с боль-шой шириной запрещенной зоны Δ W33: арсенид и фосфид галлия(GaAs, GaP, а также карбид кремния (карборунд SiC). Светодиоды испускают некогерент-ное излучение с узким спектром. Длина волны излучения λизл зависит от мате-риала полупроводника и его легирования:
В соответствии с этим выпускаются светодиоды с различным цветом излучения: GaAs – инфракрасное излучение с λизл ≈ 0,9мкм; GaP – оранжево-красные с λизл ≈ 0,6-0,7мкм и SiC – голубое и зеленое излучение с λизл ≈ 0,46-0,6мкм.
Яркость их излучения - на уровне103-105кд/м2при небольших токах(5–
20 мА) и напряжениях (1,5–3 В), что позволяет легко их применять совместно с цифровыми микросхемами; КПД светодиодов видимого излучения составляет от 0,01 % до нескольких процентов.
Конструкция и характеристики светодиода: а- вольтамперная; б – яркостная;
1 – линза;
2 – металлический баллон 3 –кристалл с p-n переходом;
4 – изолирующее основание;
5 – выводы;
Светодиоды обозначают буквами АЛ, АЛС, ИЛ, КЛ в сочетании с цифрами, например АЛ305А – знаковый светодиод, красного свечения, с яркостью свече-ния 350 кд / м 2.
Схемы включения светодиода к логическому элементу (а – при низком уровне сигнала на выходе логического элемента; б – при высоком)
Типовые данные некоторых светодиодов
Тип | Цвет свечения | Напряжение Uпр, В | Ток Iпр, мА |
АЛ113А АЛ304В АЛС321А АЛС334А АЛС335А | Красный Зеленый Желто-зеленый Желтый | 3,6 3,3 3,5 |
Применение. В составе конструктивных излучающих приборов: генераторах излучения - в волоконно-оптических линиях передачи информа-ции, в беспроводных линиях связи в пределах прямой видимости, в составе оп-тоэлектронных пар для преобразования электрического сигнала в оптический, а также для накачки твердотельных лазеров;
В полупроводниковых индикаторах – для визуального восприятия инфор-мации в РЭА; в точечных и знаковых сегментных индикаторах в виде матриц и буквенно-цифровых дисплеев, в частности, в виде бегущей строки.
К особой группе полупроводниковых генераторов излучения относятся полупроводниковые лазеры с излучающими p-n переходами, размещен-ными между высококачественными отражателями, образующими оптичес-кие резонаторы, в которых излучение становится монохроматическим и когерентным. Эти приборы являются перспективными для передачи инфор-мации по оптическим линиям связи вместо проводов [12].
2.