Глава 1. Современные информационные технологии как условие журналистской деятельности (теоретический аспект)




Введение

Глава 1. Современные информационные технологии как условие журналистской деятельности (теоретический аспект)

1.1. «Сеть сетей» Интернет – главное достижение информационной индустрии XX века

1.2. Изменения в сфере радиовещания и совершенствование технологии передачи звука на расстоянии

1.3. Развитие телекоммуникаций и систем сотовой связи в первые годы XX столетия

Глава 2. Использование современных информационных технологий в различных сферах журналистики

2.1. Online-газеты как наиболее оперативные печатные СМИ

2.2. Радиовещание в сети интернет - одно из наиболее динамично развивающихся направлений в журналистике

2.3. Мобильная журналистика: синтез технологий, скорости и актуальности

Заключение

Библиографический список используемой литературы


Введение

 

Актуальность темы исследования. Во второй половине ХХ столетия произошла подлинная революция в сфере информационных технологий. Появившиеся сеть интернет, сотовая связь, протоколы мгновенной передачи текста, звука и видеоизображения на расстоянии вывели человеческую цивилизацию на качественно новый уровень ее развития, заставили кардинально пересмотреть принципы работы во многих сферах, в том числе и в журналистике.

Сетевые средства массовой информации по ряду показателей опережают традиционные, ежеминутно расширяют свою целевую аудиторию, а в условиях ускоряющегося темпа жизни постепенно становятся приоритетными и достаточными для все большего числа людей. Этот процесс необратим, а значит, следует его исследовать, изучить пути использования работниками СМИ новых технологий в on-line журналистике, определить ее перспективы.

Объект исследования – процесс использования современных информационных технологий в журналистике на рубеже ХХ-ХХIвв.

Предмет исследования – способы использования современных информационных технологий в процессе журналистского творчества, пути их совершенствования.

Цель и задачи исследования. Целью работы является изучение процесса взаимодействия современных информационных технологий и журналистики на рубеже XX-XXIвв.

Реализация данной цели предполагает постановку и решение следующих задач:

- определить этапы развития техники и технологии, уделив особое внимание второй половине ХХ столетия;

- охарактеризовать технические новшества и технические возможности сети интернет, систем сотовой связи; изучить новейшие способы передачи звука на расстоянии (в том числе в реальном времени);

- проанализировать общее состояние сетевой журналистики, выявить основные тенденции и процессы в ее развитии;

- провести исследование состояния системы печатных интернет-СМИ современного Рунета, классифицировать ведущие издания по временному и тематическому признакам;

- проследить качественные и количественные изменения в сфере радиовещания, дать комплексную характеристику феномену интернет-радио, его возможностям в российском и мировом масштабах;

- изучить общие закономерности функционирования мобильной журналистики – результата синтеза интернета, сотовой связи и журналистского мастерства.

Научно-практическая значимость работы. Научно-практические результаты могут быть использованы при формировании концепции развития средств массовой информации в России, в аналитическом прогнозировании последующих качественных и количественных изменений в системе СМИ, в дальнейшей научно-исследовательской деятельности.

Отдельные разделы могут стать основой для составления методических и практических рекомендаций специалистам в области сетевой журналистики, сотрудникам редакций и внештатным корреспондентам.

Структура работы. Курсовая работа состоит из введения, двух глав, заключения и библиографического списка используемой литературы, включающего 36 источников, в том числе 21 интернет-ресурс.

Общий объем работы – 52 страницы.

 

 

Глава 1. Современные информационные технологии как условие журналистской деятельности (теоретический аспект)

 

Стремительная информатизация современного общества является закономерным следствием развития технологической базы. Общество сегодняшнего дня часто называют информационным (термин введен профессором Токийского технологического института Ю. Хаяши), подразумевая, что производство и потребление информации достигло беспрецедентного размаха. На данный момент не составляет труда в считанные минуты, или даже секунды, узнать, что произошло на другом конце земного шара. Эту уникальную возможность дают нам современные средства связи, средства передачи информации, в числе которых радио, телевидение, телефония, электронная почта и глобальная сеть Интернет с ее практически безграничными возможностями. Между тем наряду с беспрецедентно возросшим потенциалом для информирования социума, появились такие же по размаху возможности для его дезинформирования[1].

Капиталом современного общества становится информация и тот, кто обретет ее раньше и в наиболее достоверном варианте, получает значительные преимущества. Кроме оперативности в получении информации, использование новейших инструментов ИТ способно в достаточной мере снизить транзакционные издержки: на каждое электронное письмо нет нужды приклеивать марку, а однократная установка системы видеоконференцсвязи позволяет избежать систематических командировочных расходов.

Информационная технология формирует передний край научно-технического прогресса, создает информационный фундамент развития науки и всех остальных технологий. Определяющими стимулами развития информаци­онной технологии являются социально-экономические по­требности общества. Известно, что экономические отноше­ния накладывают свой отпечаток на процесс развития тех­ники и технологии, либо давая ему простор, либо сдерживая его в определенных границах. В свою очередь, социальное воздействие техники и технологии на общество идет прежде всего через производи­тельность труда, через специализацию средств труда и, на­конец, путем исполнения техническими средствами трудовых функций человека.

Технология - это управление естественными процессами, направленное на создание искусственных объектов: она эффективна постольку, поскольку ей удается создать необходимые условия для того, чтобы нужные процессы протекали в нужном русле и направлении. Вся история технического прогресса от овладения огнем до открытия ядерной энергии - это история последова­тельного подчинения человеку все более могущественных сил природы.

Техника и технология в своем развитии имеют эволю­ционные и революционные стадии и периоды. Вначале обычно происходит медленное постепенное усовершенство­вание технических средств и технологии. Накопления этих усовершенствований в определенный период вызы­вают коренные качественные изменения, замену устаревших технических средств и технологий новыми, использующими иные принципы. Последнее становится возможным благода­ря проникновению в технику новых научных идей и принци­пов из естествознания. Сущность технологической револю­ции заключается в техническом освоении научных открытий, на их основе технических изобретений, вызывающих перево­рот в средствах труда, видах энергии и необходимость пере­хода к новым способам производства[2].

Известно, что до XVIII века техника развивалась в основном без научной методологии: изобретатели продолжали искать «вечный двигатель», алхимики верили в таин­ственное превращение металлов. В эпо­ху Возрождения пришло осознание того факта, что возможности техники могут неизмеримо увеличиться при использовании научных открытий.

Влияние науки на технику сначала шло по линии повышения эффективности известных технических изобретений - водяного, ветряного, парового двигателей, совершенство­вания способов передачи и т.д. Тех­ническое освоение природы к концу XIX в. стало органиче­ски связанным с успехами естествознания. Тем не менее, без науки было бы принципиально невозможно освоить иные формы движения, использовать электричество, ядерную энергию и т.д.

Появление ряда новых технологий произошло в ХХ в., особенно во второй его половине: биотехнология органиче­ского синтеза искусственных веществ с заданными свойства­ми, технология искусственных конструкционных материа­лов, мембранная технология искусственных кристаллов и сверхчистого вещества, лазерная, ядерная, космическая тех­нологии и, наконец, информационная технология.

На ранних этапах истории человечества для синхронизации выполняемых действий человеку потребовались коди­рованные сигналы общения. Эту задачу человеческий мозг решил без каких-либо искусственно созданных инструмен­тов: развилась человеческая речь. Речь оказалась и первым существенным носителем человеческих знаний. Знания нака­пливались в виде устных рассказов и в такой форме переда­вались от поколения к поколению. Природные возможности человека по накоплению и передаче знаний получили пер­вую технологическую поддержку с созданием письменности. Начатый процесс совершенствования носителя информации и инструментов для ее регистрации продолжается до сих пор: камень, кость, дерево, глина, папирус, шелк, бумага, магнитные и оптические носители, кремний.

Можно согласиться с тем, что письменность стала первым историческим этапом информационной технологии. Вторым этапом считается возникновение книгопечата­ния. Стимулируемое книгопечатанием развитие наук ускоря­ло темпы накопления профессиональных знаний. Знания, овеществленные через трудовой процесс в станки, машины, технологии и т.п., становились источником новых идей и плодотворных научных направлений. Цикл: знания - наука - общественное производство - знания замкнулся, и спираль технологической цивилизации начала раскручиваться с на­растающей скоростью.

Таким образом, книгопечатание впервые создало ин­формационные предпосылки ускоренного роста производи­тельных сил. Но подлинная информационная революция свя­зана, прежде всего, с созданием электронно­вычислительных машин в конце 40-х годов, и с этого же времени исчисляется эра развития информационной техно­логии, материальное ядро которой образует микроэлектро­ника.

Микроэлектроника формирует элементную базу всех современных средств приема, передачи и обработки инфор­мации, систем управления и связи[3]. Сама микроэлектроника возникла первоначально именно как технология: в едином кристаллическом устрой­стве оказалось возможным сформировать все основные эле­менты электронных схем. Далее - всеохватывающий процесс миниатюризации: уменьшение геометрических размеров эле­ментов, что обеспечивало и совершенствование их характе­ристик, и рост их числа в интегральной схеме.

В ранний период развития новой технологии (1960-е годы) принципы конструирования машин и приборов оста­вались еще неизменными. В 70-х годах, когда технология начала превращаться действительно в микротехнологию, стало возможным размещать крупные функциональные бло­ки ЭВМ, включая ее центральное ядро - процессор - в преде­лах одного кристалла. Возникло микропроцессорное на­правление развития вычислительной техники. Микропроцес­сор - это и машина и элемент. К началу 80-х годов произво­дительность персональных ЭВМ достигла сотен тысяч опе­раций в секунду, супер-ЭВМ - сотен миллионов операций в секунду, мировой парк машин превысил 100 млн. машин. На этом рубеже для реализации потенциала развития микроэлектроники и микротехнологии требовались уже принципиально новые решения во всех областях информа­ционной технологии[4]. Технологически все труднее уменьшать размеры деталей транзисторов; быстродействие приборов приближается к верхнему, а энергопотребление к нижнему пределу; проектирование ЭВМ требует принципиально ново­го понимания основных функций и архитектуры машин. Как одно из решений проблем был разработан (Л. Конвей и М. Мид) принципиально новый подход к проектированию инте­гральных схем - структурное проектирование, которое ве­дется не от элементов к устройству, а от общей схемы по­следнего к элементам. Основную роль здесь играют системы автоматизации проектирования.

Весьма важным свойством информационной технологии является то, что для нее информация является не только продуктом, но и исходным сырьем. Более того, электронное моделирование реального мира, осуществляемое в компьютерах, требует обработки неизмеримо большего объема информации, чем содержит конечный результат. Чем совершеннее компьютер, тем адекватнее электронные модели и тем точнее наше предвидение естественного хода событий и последствий наших действий. Таким образом, электронное моделирование становится неотъемлемой частью интеллек­туальной деятельности человечества.

Сопоставление «электронного мозга» с человеческим привело к идее создания нейрокомпьютеров - ЭВМ, которые могут обучаться. Нейрокомпьютер поступает так же, как че­ловек, т.е. многократно просматривает информацию, делает множество ошибок учится на них, исправляет их и, наконец, успешно справляется с задачей. Вместо использования алго­ритма нейросеть создает собственные правила посред­ством анализа различных результатов и примеров, т.е. ней­рокомпьютеры основаны не на принципе фон Неймана (где обязателен четкий алгоритм). Нейрокомпьютеры (в настоя­щее время в эксплуатации находится 13) применяются для распознавания образов, восприятия человеческой речи, ру­кописного текста и т.д. Так, нейросеть позволяет распозна­вать рисунок пальца человека с 95% точностью при различ­ных позициях, масштабе и даже небольших повреждениях. Моделирование нейронных сетей - одно из самых перспективных направлений современных научных исследований. Каждый успешный шаг на этом пути помогает людям понять механизм процессов, лежащих в основе нашей психики и ин­теллекта. Этот путь может привести от микротехнологий к нанотехнологии и наносистемам, развитие которых президент Российской Федерации Владимир Путин отметил как одно из приоритетных направлений отечественной науки.

 

1.1. «Сеть сетей» Интернет – главное достижение информационной индустрии XX века.

 

Современный этап развития человеческой цивилизации немыслим без непрерывного расширения сети Интернет. Для журналистики – сферы общественной жизни, непосредственно связанной со сбором, хранением, обработкой и передачей информации – знание технологии «Интернет» является одни из важнейших условий творческой деятельности[5].

В целях лучшего понимания технико-технологического феномена «интернет» обратимся к истории его возникновения. Анализ источников показал, что в настоящее время наиболее распространенными являются две версии: официальная и неофициальная (она же политическая).

I. Официальная версия (активно пропагандируется Госдепартаментом США).

В начале семидесятых годов отдел Департамента Обороны США, известный под названием DARPA (Агентство Исследовательских Проектов Особой Трудности), занимался проблемами поддержки и сохранения коммуникационного контроля в случае потери основных систем связи при ядерном взрыве, произведенном Советским Союзом. Опасения вызывала возможность удара по национальному коммуникационному центру, последующая неспособность обеспечить связь военных начальников с Американскими стратегическими силами и предотвратить новый удар.

DARPA ответило на эту проблему поиском и развитием непрерываемой национальной «сети из сетей». В сущности, это стало проблемой создания программного обеспечения: как соединить компьютеры национальной системы, чтобы в случае потери одного или нескольких компьютеров из крупной сети, остальные, подсистемные модели, продолжали работу уничтоженных компьютеров.

В известном смысле это казалось нетрудной задачей. Каждое здание имеет проводниковую систему, при которой одна сгоревшая лампочка не влияет на функционирование других лампочек. Но с компьютерами это невозможно. В Американской компьютерной индустрии 1970х-80х годов разные производства выпускали массу компьютеров с различными оперативными системами (например, IBM, цифровые вычислительные машины, Microsoft и Apple), разные устройства памяти с разными разрешающими возможностями. Пятьдесят компьютеров IBM могут быть успешно подсоединены в сеть IBM компьютеров, также как и пятьдесят отдельных компьютеров Макинтош, но пятьдесят IBM и пятьдесят Макинтошей намного труднее объединить в единую сеть ста компьютеров, способных на обмен информации[6].

Итак, первая проблема была связана с развитием программного обеспечения, способного объединить несколько сетей с разными оперативными системами. Вторая проблема обращалась к проектированию программного обеспечения таким образом, что «сеть из сетей» будет продолжать функционирование несмотря на потери нескольких компьютеров. Эти две проблемы требовали огромного объема работы и талантливых специалистов, что, в конечном результате, привело к созданию программы TCP/IP.

Около 20 лет назад Министерство Обороны США создало сеть, которая явилась предтечей Internet, - она называлась ARPAnet. ARPAnet была экспериментальной сетью, - она создавалась для поддержки научных исследований в военно-промышленной сфере, - в частности, для исследования методов построения сетей, устойчивых к частичным повреждениям, получаемым, например, при бомбардировке авиацией и способных в таких условиях продолжать нормальное функционирование. Это требование дает ключ к пониманию принципов построения и структуры Internet. В модели ARPAnet всегда была связь между компьютером-источником и компьютером-приемником (станцией назначения). Сеть a priori предполагалась ненадежной: любая часть сети может исчезнуть в любой момент.

На связывающиеся компьютеры - не только на саму сеть - также возложена ответственность обеспечивать налаживание и поддержание связи. Основной принцип состоял в том, что любой компьютер мог связаться как равный с равным с любым другим компьютером.

Передача данных в сети была организована на основе протокола Internet - IP. Протокол IP - это правила и описание работы сети. Этот свод включает правила налаживания и поддержания связи в сети, правила обращения с IP-пакетами и их обработки, описания сетевых пакетов семейства IP (их структура и т.п.). Сеть задумывалась и проектировалась так, чтобы от пользователей не требовалось никакой информации о конкретной структуре сети.

Примерно 10 лет спустя после появления ARPAnet появились Локальные Вычислительные Сети (LAN), например, такие как Ethernet и др. Одновременно появились компьютеры, которые стали называть рабочими станциями. На большинстве рабочих станций была установлена Операционная Система UNIX, имевшая возможность работы в сети с протоколом Internet (IP). В связи с возникновением принципиально новых задач и методов их решения появилась новая потребность: организации желали подключиться к ARPAnet своей локальной сетью. Примерно в то же время появились другие организации, которые начали создавать собственные сети, использующие близкие к IP коммуникационные протоколы. Стало ясно, что все только выиграли бы, если бы эти сети могли общаться все вместе.

Одной из важнейших среди этих новых сетей была NSFNET, разработанная по инициативе Национального Научного Фонда (National Science Foundation - NSF), аналога нашего Министерства Науки. В конце 80-х NSF создал пять суперкомпьютерных центров, сделав их доступными для использования в любых научных учреждениях, затем решил построить свою собственную сеть, основанную на IP технологии ARPAnet. Центры были соединены специальными телефонными линиями. Однако, было очевидно, что не стоит даже и пытаться соединить все университеты и исследовательские организации непосредственно с центрами, т.к. проложить такое количество кабеля - не только очень дорого, но практически невозможно. Поэтому решено было создавать сети по региональному принципу. В каждой части страны заинтересованные учреждения должны были соединиться со своими ближайшими соседями. Получившиеся цепочки подсоединялись к суперкомпьютеру в одной из своих точек. В такой топологии любой компьютер мог связаться с любым другим, передавая сообщения через соседей.

Важно отметить то, что усилия NSF по развитию сети привели к тому, что любой желающий может получить доступ к сети. Прежде Internet была доступна только для исследователей в области информатики, государственным служащим и подрядчикам. NSF способствовал всеобщей доступности Internet по линии образования, вкладывая деньги в подсоединение учебного заведения к сети, только если то, в свою очередь, имело планы распространять доступ далее по округе.

II. Неофициальная версия. Сегодня много говорят о том, что Интернет возник на средства Управления перспективных разработок Министерства обороны США (DARPA — Defense Advanced Research Project Agency). Об имеющейся у Министерства обороны потребности связать между собой научно-исследовательские центры и крупнейшие университеты, чтобы ученые, занимающиеся важными проблемами, могли оперативно обмениваться документацией и информацией. Называется и дата, когда это замечательное событие произошло — примерно осенью 1969 года. Однако те, кто знают, как развивалась наука в XX веке, никогда поверят, что Министерство обороны США (или какое-либо иное Министерство обороны) может вложить миллиарды долларов, чтобы ученым стало удобно работать. Никогда ни одно правительство мира не допустит, чтобы участники стратегических проектов свободно контактировали, с кем пожелают. Тем более никто не будет тратить деньги на то, чтобы сделать эти контакты более удобными.

На самом деле DARPA занималось не внедрением, а контролем за внедрением компьютерных сетей в гражданской сфере, которое к концу 60-х годов стало уже неотвратимым.

Подлинную хронологию Интернета следует отсчитывать с конца 50-х годов. Можно точно назвать дату, когда было принято правительственное решение, в результате которого и появилась первая глобальная сеть: 1958 год. Правда, понятия Интернет тогда, разумеется, не существовало. И никто вовсе не собирался обустраивать работу ученых с помощью компьютерной сети. Это был, так сказать, «побочный эффект», который сегодня задним числом выдают за цель и достижение. Истинная же цель оказалась гораздо важнее.

В 1949 г. в СССР успешно испытали первую атомную бомбу. В 1952 г. не менее успешно была испытана водородная бомба. В 1956 г. военное руководство в США впервые заговорило о необходимости разработки системы защиты от ядерного оружия, но первые запросы остались без внимания.

В 1957 г. в СССР был выведен на орбиту первый искусственный спутник Земли. В результате в 1958 г. было, наконец, принято правительственное решение о создании глобальной системы раннего оповещения о пусках ракет. Так в конце 50-х годов началась разработка системы NORAD (North American Aerospace Defence Command). Предотвратить атаку она, конечно, не могла, но пятнадцать минут на то, чтобы скрыться в подземные бункеры, у людей появилось.

Система NORAD получилась очень большой. Ее станции протянулась от Аляски до Гренландии через весь север Канады. Сразу возникла новая проблема: как обрабатывать результаты наблюдения воздушных объектов (а летают на Севере не только ракеты), как согласовать действия многочисленных постов, как выделить из множества сигналов те, которые представляют угрозу и как привести в действие систему оповещения. Все это могут делать люди, но людям на принятие и согласование решений нужны часы, а здесь счет шел на секунды. Эту огромную систему нужно было компьютеризировать, а компьютеры объединить в единую разветвленную сеть.

Стоимость системы NORAD измерялась десятками миллиардов долларов. В рамках такого бюджета действительно нашлись те несколько миллиардов, которые были использованы для создания глобальной компьютерной сети, обрабатывающей информацию со станций наблюдения.

Сеть системы NORAD не долго оставалась внутриведомственной. Сразу после запуска началось подключение к ней служб управления авиаполетами — это логично, ведь все равно система контролировала воздушное пространство на огромных просторах. Сначала подключались военные авиаслужбы, но уже в середине 60-х годов активно шло подключение гражданских авиационных служб. Сеть неуклонно расширялась и развивалась, она вбирала в себя метеорологические службы, службы контроля состояния взлетных полос аэродромов и другие системы, как военные, так и гражданские.

Вот так и получилось, что задолго до создания проекта ARPANET, в США уже действовала глобальная компьютерная сеть Министерства обороны.

Первая очередь системы NORAD была завершена в мае 1964 года, но к тому времени уже стало известно о существовании в России ядерных зарядов мощностью 50 мегатонн. Несмотря на то, что гора, в которой разместился центр управления, отбиралась очень тщательно (она представляет из себя единый скальный массив), стало ясно, что и у нее нет шансов. А выход из строя центра управления однозначно вызывал (в те годы) выход из строя всей глобальной системы. В итоге многомиллиардная затея с разработкой и строительством подземного центра управления оказалась бесполезной. Поэтому во второй половине 60-х годов перед Пентагоном встала проблема разработки такой архитектуры глобальной Сети, которая не выходила бы из строя даже в случае поражения одного или нескольких узлов.

В качестве экспериментальной площадки было предложено использовать университетские компьютеры и вычислительные центры научных организаций. С точки зрения военных эксплуатация сети в научном и университетском окружении должна была стать для неё самым суровым испытанием, какое только можно придумать. В борьбе со множеством непредсказуемых случайностей университетские круги рано или поздно должны были найти простое и эффективное решение. Так оно и произошло. Решением проблемы стало внедрение в 1983 г. протокола TCP/IP. С этого времени отсчитывают второй этап развития Интернета[7].

Строго говоря, TCP/IP — это не один протокол, а пара протоколов, один из которых (TCP — Transport Control Protocol) отвечает за то, как представляются данные в Сети, а второй (IP — Internet Protocol) определяет методику адресации, то есть отвечает за то, куда они отправляются и как доставляются. Эта пара протоколов принадлежит разным уровням и называется стеком протоколов TCP/IP. Собственно говоря, только с появлением IP-протокола и появилось понятие Интернет.

Долгое время Интернет оставался уделом специалистов. Его революционное развитие началось только после 1993 г. с увеличением в геометрической прогрессии числа узлов и пользователей. Поводом для революции стало появление службы World Wide Web (WWW), основанной на пользовательском протоколе передачи данных HTTP и на особом формате представления данных — HTML. Документы, выполненные в этом формате, получили название Web-страниц.

Одновременно с введением концепции WWW была представлена программа Mosaic, обеспечивающая отправку запросов и прием сообщений в формате HTML. Эта программа стала первым в мире Web-браузером, то есть программой для просмотра Web-страниц. После этого работа в Интернете перестала быть уделом профессионалов. Интернет превратился в распределенную по миллионам серверов единую базу данных, навигация в которой не сложнее, чем просмотр обычной мультимедийной энциклопедии[8].

В действительности Internet не просто сеть, - она есть структура, объединяющая обычные сети. Internet - это «Сеть сетей». В Internet нет единственной авторитарной фигуры. Высшая власть, где бы Internet ни была, остается за ISOC (Internet Society). ISOC - общество с добровольным членством. Его цель - способствовать глобальному обмену информацией через Internet. Оно назначает совет старейшин, который отвечает за техническую политику, поддержку и управление Internet.

Сегодня Интернет — это крупный комплекс, включающий в себя более 12 тысяч локальных сетей, автономные компьютеры, соединенные между собой любыми средствами связи, а также программное обеспечение, которое обеспечивает взаимодействие всех этих средств на основе единого транспортного протокола TCP и адресного протокола IP.

Internet имеет около 15 миллионов абонентов в более чем 150 странах мира. Ежемесячно размер сети увеличивается на 7-10%. Internet образует своеобразное ядро, обеспечивающее связь различных информационных сетей, принадлежащих различным учреждениям во всем мире, одна с другой.

 

1.2. Изменения в сфере радиовещания и совершенствование технологии передачи звука на расстоянии.

 

Звук сегодня является действительно неотъемлемым элементом мультимедийных домашних страниц в интернете. Современные звуковые технологии в интернете ориентированы на решение самых разнообразных задач – от вещательной передачи звуковых фрагментов в реальном масштабе времени до традиционных систем с растянутой во времени загрузкой файлов и последующим их воспроизведением, причем применяются для этого самые различные форматы передачи звукоданных.

Сегодня в распоряжении пользователей целый ряд стандартных форматов звуковых файлов:

1) WAV (от waveform - форма сигнала), или просто wave-файлы. Это наиболее распространенный формат звукоданных в компьютерах на платформе IBM/Windows. (При наличии соответствующего программного обеспечения можно воспроизводить WAV-файлы на персональных компьютерах платформы Macintosh и других системах);

2) AU (Sparc-аудио) является одним из самых старых звуковых форматов для Интернет, и средства его воспроизведения разработаны практически для всех компьютерных платформ;

3) AIFF (Audio Interchange Format) - формат обмена звуковой информацией, особенно распространенный на платформе Macintosh. Он широко применяется в мультимедиа-приложениях, но не является общепринятым в Web;

4) MIDI (Musical Instrument Digital Interface) - интерфейс электронных музыкальных инструментов. Данный формат представляет не оцифрованный звук, а ноты и другую информацию, с помощью которой можно затем синтезировать музыку. Формат MIDI имеет широкую поддержку и позволяет получить компактные файлы, но в Интернет полезен лишь для ограниченного класса приложений;

5) MPEG - (Moution Picture Enhancing Group) стандартизованное в ИСО (стандарты 11172-3 и 13818-3) семейство форматов различного уровня сложности с гибкими возможностями сжатия аудио- и видеоданных. В то же время MPEG еще не настолько распространен, как многие привыкли считать, и разработка и стандартизация MPEG еще не завершена (сейчас готовится новый стандарт MPEG-4). И, несмотря на хорошее качество и высокую эффективность передачи, аппаратно-программные средства кодирования и декодирования MPEG пока не так уж распространены.

Звуковые файлы форматов AU и WAV воспроизводятся вспомогательными приложениями и интегрируемыми модулями, но собственная поддержка данных форматов в пользовательских программах-браузерах (навигаторах) по Интернет, наиболее распространенных сегодня - Netscape 3.0 и Internet Explorer 3.0 отсутствует. Качество воспроизведения формата WAV не настолько хорошее, как можно было бы ожидать от файлов такого размера. MIDI-файлы могут аппаратно воспроизводиться звуковыми картами персональных компьютеров (такими, например, как SoundBlaster) и по качеству напоминают мелодии, издаваемые простым электромузыкальным клавишным инструментом.

Если необходим звук профессионального качества при высоком уровне уплотнения, то единственным выбором является формат MPEG. Он дает приемлемые результаты и в тех случаях, когда очень хорошее качество необязательно, однако такой недостаток программного обеспечения для его воспроизведения, как реализация только в виде вспомогательных приложений, а не интегрируемых модулей или собственных средств браузеров, нередко заставляет отдавать предпочтение другим форматам[9].

Хотя в общем случае при загрузке и воспроизведении звуковых файлов через Интернет следует придерживаться стандартных форматов, один патентованный формат заслуживает особого упоминания. Это RapidTransit фирмы FastMan. В нем используется схема адаптивного уплотнения волнового сигнала. Например, 30-секундный музыкальный фрагмент "Hootie and the Blowfish" такого же качества, какое достигается воспроизведением записи с компакт-диска, в неуплотненном виде занимает объем 2,69 Мбайт, а после сжатия в формате RapidTransit - всего 90 Кбайт. Патентованные форматы предлагают то, чего не хватает многим «стандартным» форматам цифрового звука, а именно возможности организации непрерывного потока данных (т.е. передачи в реальном масштабе времени). Потоковые звукоданные не требуют дискового пространства и допускают произвольный доступ к любому месту звукового файла.

Между тем у поточных звукоданных есть несколько потенциальных недостатков.

Во-первых, чтобы в достаточной мере сжать звукоданные для поточновой передачи, приходится жертвовать качеством звукопередачи. Во-вторых, сами протоколы Интернет не приспособлены к непрерывному поточному обмену. Каждый, кому в течение какого-то времени приходилось работать с Интернет, без сомнения, сталкивался с периодически возникающими задержками.

Впервые практическая передача звука через интернет в непрерывном поточном режиме была реализована в разработках фирмы Progressive Networks. На ее узле RealAudio для пересылки непрерывных звукоданных вспомогательному приложению браузера, интегрируемому модулю Netscape (Shockwave Xtra) или элементу управления ActiveX используется специальный программный сервер. Благодаря наличию средств воспроизведения на всех основных компьютерных платформах RealAudio является сегодня наиболее распространенным форматом непрерывной передачи звукоданных в интернете, его используют большинство крупных звуковых служб и звуковых серверов. В настоящее время, несмотря на значительную конкуренцию и архитектурные ограничения, формат RealAudio доминирует на рынке звуковых средств.

Основное достижение компании Progresive Networks состоит в том, что она разработала расширение языка HTML для прослушивания звуковых файлов с помощью системы RealAudio, состоящей из сервера, где хранятся звуковые файлы в гипертекстовом формате, и «проигрывателя», встраиваемого в программу просмотра. Щелчком мыши по значку звуковой связи на Web-странице пользователь инициирует непрерывную передачу пакетов информации с сервера по сети интернет. «Проигрыватель» системы RealAudio вместе со звуковой картой персонального компьютера превращает этот поток данных в звук.

Специалисты предсказывают дальнейшее повышение качества звука по мере совершенствования ЭВМ. В настоящий момент при пересылке звукоданных через модемы на скорости 14,4 Кбит/с обеспечивается качество звучания, как у радиоприемников с амплитудной модуляцией (АМ-качество). Однако при увеличении скорости передачи до 28,8 Кбит/с можно добиться качества звучания радиоприемников с частотной модуляцией (ЧМ-качество). В общем, перспектива получения качественного звука с помощью микросхем обработки цифровых сигналов, расположенных на звуковой плате или в модеме, выглядит весьма привлекательно.

На фоне отвлеченных споров о будущем интернета, о протоколах и стандартах, призванных обеспечить внедрение новейших технологий, отрадно наблюдать, как одна из них – передача звукоданных – развивается практически. Причем в данном случае понятно назначение информации и известны ее потребители. Разработанные звуковые технологии масштабируемы, опираются на уже существующие стандарты и готовы к переносу в более скоростные сети, как только те станут реальностью. Тогда по сети будут передаваться звуковые потоки с качеством CD и без всяких перерывов.

Появилось несколько возможных способов применения звуковых потоков в Интернет. Почти очевидным стало перенесение систем радиовещания из обычного радиоэфира в цифровые сети. Тысячи радиостанций установили у себя потоковые серверы и начали передавать свои обычные «живые» программы в Интернет.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2020-03-31 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: