Внешние запоминающие устройства




Графическая подсистема

Считается, что прадедушкой современной видеокарты является адаптер MDA (Monochrome Display Adapter), представленный в 1981 году для IBM PC. Видеокарта того времени имела 4Кбайт видеопамяти, работала только с текстовой информацией и с разрешением 720х350 точек и могла выдавать на дисплей 25 строк по 80 символов в строке. Цвет букв зависел от типа монитора: белые, изумрудные или янтарные, а сами буквы могли выводиться в обычном, подчеркнутом, инверсном (темные на светлом фоне) и мигающем режимах. Дальнейшее развитие MDA было выпущено в 1982 году известной тогда компанией Hercules и называлось Hercules Graphics Controller (HGC). «Геркулес» отличался от MDA способностью выводить текст в 132 колонки и 44 строки. Но и эта видеокарта не позволяла работать с графикой. Стоит заметить, что длина карты HGC была более 30 см.

Рисунок 7. Видеоадаптер HGC

И только с выходом видеоадаптера CGA (Color Graphics Adapter), который стал основой для последующих стандартов, появилась возможность работать с цветной графической информацией в разрешении 320х200 (4 цвета) и 640х200 (монохромный режим), при этом объём памяти видеокарты уже равнялся 16 Кбайт. Все упомянутые выше карты для соединения с ПК использовали шину Multibus.

Следующий стандарт для видеокарт – Enhanced Graphics Adapter (EGA), разработанный в 1984 году, позволял при разрешении 640x350 работать с 16 цветами из 64-цветной палитры одновременно. Ёмкость видеопамяти составляла теперь от 64 до 256 Кбайт, а также была заявлена совместимость с CGA и MDA. Начиная с EGA, видеоадаптеры начали использовать «широкую» шину ISA.

Все описанные выше видеокарты подключались к монитору через 9-контактный разъём и передавали информацию в цифровом виде. Только с выходом адаптера стандарта MCGA (MultiColor Graphics Adapter – многоцветный графический адаптер) произошёл переход на аналоговый сигнал, так как палитра была увеличена до 262144 цветов (по 64 оттенка на каждый из базовых цветов Red/Green/Blue). Разрешение экрана, выдаваемое MCGA при работе с текстом, было 640х400 с 256 одновременно отображаемыми цветами, для графических приложений – 320х200 точек. Разъём для подключения к монитору приобретает привычный для нас вид – 15-контактный «D-Sub». Еще одна особенность MCGA – точка на экране теперь стала квадратной (раньше она была прямоугольной). Это означает, что окружность, выведенная на экран, будет действительно окружностью, а не эллипсом.

Следующим витком эволюции компьютерной видеоподсистемы является VGA (Video Graphics Array – графический видеомассив), который появился в 1987 году. Адаптеры VGA уже поддерживали разрешение 640х480 и 256 цветов (из палитры в 262144 цвета), объём памяти составлял 256-512 Кбайт, а соотношение сторон экрана равнялось привычным сейчас 4:3.

И наконец, в 1991 году появляются первые адаптеры SVGA (Super VGA), позволяющие работать при разрешении 800х600 и 1024х768 точек, количество отображаемых цветов увеличилось до 65536 (High Color) и 16,7 млн. (True Color). Также появляется возможность пользователю задать частоту обновления экрана монитора – до этого момента она была жёстко привязана к определённому значению. Память видеоадаптеров SVGA была уже более 1 Мбайт.

С развитием графических оболочек операционных систем (например, Windows) видеокарты взяли на себя часть вычислений по окончательному выводу изображения на экран, которые обычно производил центральный процессор: перемещение окон, рисование линий, шрифтов и другие. С появлением трёхмерных игр видеокарты обзавелись 3D-акселератором, который сначала имел вид отдельной карты, вставляемой в свободный разъём на материнской плате – до этого момента видеоадаптер позволял работать только с двухмерной графикой (2D). Акселератор, как правило, включался в разрыв кабеля между видеокартой и монитором и брал на себя видеовывод, когда этого требовала выполняющаяся на компьютере программа. Далее, с развитием технологий производства полупроводников, графический чип стал содержать в себе все необходимые блоки, отвечающие как за 2D-, так и 3D-графику.

Именно тогда доминирующая на тот момент компания 3dfx (все активы 3dfx после банкротства перешли к NVIDIA) представляет технологию SLI (Scan Line Interleave – чередование строчек), благодаря которой появилась возможность объединить две подобные видеокарты с шиной PCI для формирования изображения методом чередования строк, что увеличивало быстродействие графической подсистемы и разрешение экрана.

 

Рисунок 8. Спаренный видеоускоритель (SLI)

 

На рисунке 7 показана видеокарта Quantum3D Obsidian X-24 на базе двух Voodoo2 в режиме SLI

Действительно, всё новое – это хорошо (в данном случае – очень хорошо) забытое старое: спустя почти 15 лет NVIDIA возродила SLI в видеокартах для шины PCIe.

 

Рисунок 9. Видеокарта с шиной AGP

Ближе к концу 90-х прошлого века видеоадаптеры получили собственную шину – AGP (Accelerated Graphics Port – ускоренный графический порт) и приобрели черты современных видеокарт: объём локальной видеопамяти достиг десятков мегабайт, появилась возможность выводить видеоизображение на ещё один приёмник, например, телевизор. На рисунке 8 изображена видеокарта на базе SiS315 с шиной AGP.


Практически все современные видеокарты состоят из следующих основных компонентов:

 

· Видеопамять.

· Набор микросхем, (видеочипсет).

· Видео BIOS.

· Тактовые генераторы.

 

Принцип работы видеокарт (при формировании двумерного изображения) не сильно отличается от принципов, на которых была основана работа адаптера CGA. Центральный процессор компьютера формирует изображение (кадр) в виде массива данных и записывает его в видеопамять, а конкретно - в кадровый буфер. После этого видеочипсет последовательно, бит за битом, строка за строкой, считывает содержимое кадрового буфера и передает его RAMDAC (цифро-аналоговый преобразователь данных, хранящихся в памяти). Он в свою очередь формирует аналоговый RGB-сигнал, который вместе с сигналами синхронизации передаётся на монитор. Сканирование видеопамяти осуществляется синхронно с перемещением луча по экрану монитора, сигналы синхронизации вырабатывают встроенные в видеокарту тактовые генераторы.

 

 


Внешние запоминающие устройства

ВЗУ являются важной составной частью ПК, обеспечивая долговременное хранение данных и программ на различных носителях информации. В персональных ЭВМ наиболее широкое распространение получили ВЗУ на основе магнитных и оптических дисков, также применяются накопители, использующие технологию FLASH. Мы рассмотрим применяемые в ПК внешние запоминающие устройства в порядке их появления.

Накопители на гибких магнитных дисках – НГМД– FDD – Floppy disk drives являются устройствами со сменным носителем информации. НГМД был впервые представлен фирмой IBM в 1971 году, диаметр диска составлял тогда 8 дюймов, а емкость – 80 Кбайт. Для записи данных использовалась только одна сторона диска. В 1976 году появилась привычная для многих дискета формата 5,25”, емкостью 110 Кбайт, к 1984 на эту дискету помещалось уже 1,2 Мбайта информации. Привод для работы с такими дисками впервые был выпущен компанией Teac. В 1981 году фирма Sony выводит на рынок дискету диаметром 89мм (3,5”) и дисковод для нее. Именно этот тип дискеты станет стандартом в мире ПК после того, как IBM использует ее в машинах серии PS/2. Емкость таких дискет составляет от 360 (первые экземпляры) до 2880 Кбайт (дискеты QD – Quad Density). «Трехдюймовые» дискеты в настоящее время активно вытесняются накопителями, использующими технологию FLASH, однако до сих пор многие продолжают использовать этот недорогой и привычный носитель информации.


Устройство дискеты 3,5” показано на рисунке. Цифрами обозначены:

Рисунок 10. Устройство дискеты

1. Переключатель защиты от записи. В углу дискеты находится небольшое прямоугольное отверстие, которое может быть открыто или закрыто специальной защелкой. Дисковод анализирует состояние этого отверстия и, если оно открыто, отказывается производить запись на диск. Пользователю при этом отправляется сообщение о том, что диск защищен от записи.

2. Металлический диск с двумя прямоугольными отверстиями. За него шпиндельный привод дисковода вращает собственно магнитный диск. Два отверстия нужны для того, чтобы установка диска в привод происходила всегда в одном и том же положении. Это необходимо для того, чтобы сектора при форматировании располагались на своих, строго определенных местах.

3. Металлическая (или пластиковая) шторка, предохраняющая магнитный диск от повреждений. При установке дискеты в привод она сдвигается вбок, открывая магнитным головкам дисковода доступ к поверхности диска.

4. Пластиковый корпус дискеты. Хотя эти диски и принято называть гибкими (floppy), такое название для дискет 3,5” – всего лишь дань традиции. «Трехдюймовые» дискеты имеют жесткий корпус, и при попытке согнуть такую дискету она неизбежно будет испорчена.

5. Внутреннее покрытие корпуса из ворсистого нетканого материала. Его назначение – очищать поверхность диска от попавшей внутрь пыли и предохранять его от повреждений об элементы конструкции дискеты, такие как пружина шторки и т.д.

6. Собственно магнитный диск. Лавсановая основа с напыленным с обеих сторон магнитным слоем. С 1981 года состав этого слоя трижды изменялся, поскольку увеличение плотности записи данных на диск требовало повышения коэрцитивной силы магнитного покрытия. Соответственно запись на дискеты с разным покрытием должна производиться при различных значениях силы тока в магнитной головке, чтение с разных дисков тоже имеет свои нюансы. Для того, чтобы привод мог различать дискеты различной емкости, в 1984 году в их конструкцию был введен индикатор плотности. Он расположен напротив переключателя защиты от записи и представляет собой такое же отверстие (на дискетах 360 Кб отверстия нет, на дискетах 2880 Кб отверстий два – одно под другим). Эти отверстия не могут быть закрыты никакими защелками. Анализируя их наличие (и количество), привод определяет тип вставленной в него дискеты.

7. Сектор. Он не является физической частью дискеты. Поверхность магнитного диска логически разделена на некоторое количество (обычно 80) дорожек, хранящих данные. Сектор – это участок дорожки, данные с которого поступают в компьютер в ходе одной операции чтения (то же касается и записи). Дискеты наиболее популярного формата 1440 Кб размечены таким образом, что на каждой их стороне имеется по 80 дорожек, каждая из которых разбита на 18 секторов. Каждый сектор, соответственно, хранит по 512 байт данных.

Для соединения с компьютером НГМД используют специальный 34-контактный интерфейс, не изменявшийся с конца семидесятых годов прошлого века. Примечательно, что современные производители ПК не спешат убирать поддержку флоппи-дисководов из своих изделий. Так происходит потому, что спектр задач, в которых гибкие диски находят применение, до сих пор довольно широк. Существуют, к примеру, вполне современные версии операционных систем, предусматривающие загрузку с одной или двух дискет и последующее полноценное функционирование компьютера в качестве, например, маршрутизатора или «тонкого клиента» с доступом в Web. Такие решения позволяют исключить из состава ПК другие виды внешних запоминающих устройств, такие как накопители на оптических дисках или НЖМД.

Накопители на жестких магнитных дисках – НЖМД – HDD – Hard Disk Drives являются устройствами с несменным носителем. Основное конструктивное отличие НЖМД от НГМД заключается в том, что блок магнитных головок, система позиционирования и пакет магнитных дисков находятся в едином герметично закрытом корпусе. Сами диски обычно имеют металлическую основу. Такой накопитель был впервые применен фирмой IBM в 1973 году.

Герметизация диска в накопителе позволила добиться качественного увеличения его характеристик благодаря идеальной чистоте рабочих поверхностей. Плавающие над поверхностями дисков магнитные головки дали возможность резко (в десятки раз по сравнению с ГМД) увеличить скорость вращения пакета дисков, в котором могут находиться до четырех пластин. Перечисленные выше конструктивные особенности НЖМД дают понять, что емкость и быстродействие жестких дисков во много (сотни тысяч) раз превышают соответствующие параметры НГМД. Для обмена информацией между жестким диском и компьютером интерфейс гибких дисков оказался совершенно непригоден. С 1973 года жесткие диски поменяли пять типов интерфейсов:

ST506/412. Диски с таким интерфейсом поддерживались машинами IBM PC XT. Он был разработан в начале 80-х фирмой Seagate Technologies, допускал подключение двух накопителей к одному контроллеру и не отличался высокими характеристиками. Фактически накопитель с этим интерфейсом представлял собой увеличенную копию НГМД. Название интерфейса происходит от названия первого накопителя, в котором он использовался.

ESDI – Enhanced Small Drive Interface. Появился в середине 80-х годов и представлял собой улучшенную версию ST506/412. Улучшения касались скорости работы и максимальной поддерживаемой емкости дисков. С ESDI могли работать устройства объемом до 760 Мбайт, по тем временам это была очень большая цифра. Как и ST506/412, ESDI был последовательным интерфейсом, то есть данные от диска/к диску передавались побитно по единственному предназначенному для этого проводнику.

SCSI – Small Computer System Interface (произносится как "скази") является универсальным интерфейсом для любых классов устройств. В отличие от ST412/ST506 и ESDI, в SCSI отсутствует ориентация на работу именно с жесткими дисками - он лишь определяет протокол обмена командами и данными между равноправными устройствами; фактически SCSI является упрощенным вариантом системной шины компьютера, поддерживающим до восьми устройств. Такая организация требует от устройств наличия определенного интеллекта - например, в винчестерах SCSI все функции кодирования/декодирования, поиска сектора, коррекции ошибок и т.п. возлагаются на встроенную электронику, а внешний SCSI-контроллер выполняет функции обмена данными между устройством и компьютером - часто в автономном режиме, без участия центрального процессора (режимы DMA или Bus Mastering). SCSI – Small Computer System Interface, в отличие от предыдущих интерфейсов, является параллельным, то есть данные в нем передаются одновременно по нескольким проводникам. Это дополнительно повышает его быстродействие по сравнению с ранее рассмотренными интерфейсами. Каждый контроллер SCSI в состоянии одновременно обслуживать до семи устройств (восьмым является сам контроллер). Современные версии этого интерфейса применяются до сих пор, однако сфера их применения ограничена главным образом серверами и высокопроизводительными рабочими станциями.

IDE – Integrated Drive Electronics или ATA (AT Attachment - подключаемый к AT) - простой и недорогой интерфейс, впервые появившийся в PC AT. Все функции по управлению накопителем обеспечивает встроенный контроллер, а 40-проводной соединительный кабель является фактически упрощенным сегментом 16-разрядной магистрали AT-Bus (ISA). Простейшие адаптеры IDE содержали только адресный дешифратор - все остальные сигналы заводились прямо на разъем ISA. Адаптеры IDE обычно не содержали собственного BIOS - все функции поддержки IDE были встроены в системный BIOS PC AT. Однако интеллектуальные или кэширующие контроллеры могут иметь собственный BIOS, подменяющий часть или все функции системного. Основной режим работы устройств IDE - программный обмен (PIO) под управлением центрального процессора, однако все современные винчестеры EIDE (Enhanced IDE) поддерживают обмен в режиме DMA, а большинство контроллеров - режим Bus Mastering. Стандарт Ultra ATA (называемый также ATA-33 и Ultra DMA-33) предложен фирмами Intel и Quantum. В нем повышена скорость передачи данных (до 33 Мб/с), предусмотрено стробирование передаваемых данных со стороны передатчика (в прежних ATA стробирование всегда выполняется контроллером) для устранения проблем с задержками сигналов, а также введена возможность контроля передаваемых данных (метод CRC). В 1999 году введена разновидность Ultra ATA-66 с режимом обмена Ultra DMA-66, выполняемом с максимальной скоростью 66 Мб/с. Все четыре разновидности имеют одинаковую физическую реализацию - 40-контактный разъем, но поддерживают разные режимы работы, наборы команд и скорости обмена по шине. Все интерфейсы совместимы снизу вверх (например, винчестер EIDE может работать с контроллером ATA, но не все режимы контроллера Ultra ATA-66 возможны для винчестера ATA). Отдельно стоит стандарт ATAPI (ATA Packet Interface - пакетный интерфейс ATA), представляющий собой расширение ATA для подключения устройств прочих типов (оптических приводов, стримеров и т.п.). ATAPI не изменяет физических характеристик ATA - он лишь вводит протоколы обмена пакетами команд и данных, наподобие SCSI. Каждый контроллер IDE допускает одновременное подключение двух устройств в режимах Master (ведущий) и Slave (ведомый). Режим обычно выбирается перемычками на корпусе устройства. Также несколько контроллеров IDE в одном компьютере могут работать одновременно. В настоящее время интерфейс IDE поддерживает обмен данными со скоростью до 133 Мб/с, однако он постепенно уходит в прошлое, уступая место новому стандарту – Serial ATA.

SATA – Serial AT Attachment. Появление нового интерфейса для подключения современных жестких дисков не случайно было воспринято всеми причастными к компьютерным технологиям с интересом - предыдущий интерфейс (который тут же получил название Parallel ATA, PATA) уже не мог обеспечить дальнейшего развития технологий. Фактически, он достиг своего предела на скорости обмена данными 133 Мбит/с. Да и то, достижение подобной скорости несколько выбило разработчиков из привычной колеи - ведь потребовалось применение нового кабеля с дополнительными экранирующими проводниками, что неизбежно сказалось и на стоимости, и на совместимости. По этой же причине нежелательным стало подключение двух накопителей разных типов на один шлейф, поскольку параметры канала устанавливались в соответствие самому "медленному" из подключенных интерфейсов. Приходилось выкручиваться: или подключать "старый" накопитель к другому каналу IDE, параллельно накопителю CD, или вообще избавляться от него. Причем первый вариант не всегда был возможен, поскольку у многих было установлено два накопителя - например, связка из проигрывателя DVD и CD-RW. Поэтому интерес был очевиден.
Скорость передачи данных в самой первой версии интерфейса составляет 150 Мб/с. В более свежих спецификациях заявлена максимальная скорость обмена данными до 600 Мб/с. Если быть предельно точным, то происходит ступенчатое продвижение на рынок трех поколений интерфейса Serial ATA - второе обеспечивает скорость до 300 Мб/с, а третье, соответственно, до 600 Мб/с. (Хотя пока не совсем ясно, как разработчики накопителей на жестких дисках собираются использовать весь потенциал канала с такой высокой пропускной способностью, ведь скорость чтения с пластин заведомо ниже). Тем не менее, в области пропускной способности канала все ясно - разработчиков накопителей уже ничто не ограничивает. Но это не единственная сильная сторона новой разработки. В качестве второго по значимости фактора стоит упомянуть кардинально новую организацию подключения устройств. Главное преимущество - это возможность "горячего" подключения устройств. Данный факт существенно упрощает манипуляции с накопителями. Кроме того, новый кабель для подключения тоже полностью изменился - теперь он насчитывает всего семь проводов, выполнен плоским и тонким. И, самое главное, длина его может достигать метра. Для интерфейса PATA длина шлейфа ограничивалась 46 см. Такое исполнение кабеля дает целый ряд преимуществ: экономится место на системной плате, появляется возможность аккуратной прокладки и, что немаловажно, новая конструкция кабеля не создает проблем вентиляции корпуса. Что касается разъема питания, то его конструкция также подверглась переработке. В частности, помимо привычных +5 В и +12 В на разъем завели еще и +3,3 В. Сигнальный интерфейс работает с пониженным напряжением - +3 В, что снижает энергопотребление устройства и упрощает интеграцию контроллера на материнскую плату. Интересно, что когда интерфейс SATA только-только появился, некоторые производители снабжали свои накопители дублирующим разъемом питания старого образца, строго предупреждая "ни в коем случае не подключать оба питающих разъема одновременно - во избежание выхода устройства из строя". Такая конструкция делала переход на новый стандарт менее болезненным для пользователя, поскольку материнские платы, как правило, снабжались шлейфом передачи данных и редко - переходником для подключения питания. Еще одна особенность заключается в том, что интерфейс Serial ATA подразумевает наличие полностью независимых каналов - то есть старая классификация Master-Slave "осталась за бортом". Каждое устройство подключается к своему каналу и никак не влияет на остальные. В дополнение ко всему, этот интерфейс обладает встроенными средствами контроля ошибок – ЕСС. Кстати, хотя с появлением UltraATA 33 и была введена проверка целостности данных по CRC, средств обнаружения и исправления ошибок в этом интерфейсе так и не появилось.

Накопители на оптических дисках. Технология оптической записи информации на диск появилась в 1961 году в Стэндфордском университете США. Запись информации осуществлялась фотографическими методами в виде светлых точек и черточек на темном фоне. Воспроизведение производилось путем просвечивания видеодиска лучом ртутной лампы. В семидесятые годы технология оптических дисков была доведена до промышленного производства и конкурировала с дисками механической (Telefunken, Decka), емкостной (RCA) и магнитной (Bogen) видеозаписи. В 1975 году продавались звуковые диски сразу нескольких фирм — Philips, Sony, Hitachi, Mitsubishi, Sanyo и ряда других. Самыми похожими на современные оптические носители были образцы фирмы Philips. Диаметр диска составлял 12 см (у всех других — 30 см), время звучания — 1 час. В июне 1979 года между фирмами Philips и Sony был заключен договор о совместной разработке системы оптической записи звука.

Работы по созданию систем оптических дисков проводились и в нашей стране. В 1975 году в структуре ВНИИРПА им. А. C. Попова была сформирована научная группа с целью разработки и реализации технологий записи и воспроизведения звуковой информации студийного качества на оптических носителях. Сложность создания таких систем в то время заключалась в отсутствии в распоряжении наших ученых полупроводниковых лазеров. Во многом именно это и определило дальнейшую судьбу отечественного компакт-диска. Для работы накопителей приходилось использовать газовый лазер ЛГ-75, который представлял собой довольно тяжелую трубку 20 сантиметров длиной. Он закреплялся неподвижно, а диск располагался на подвижной каретке, которая перемещалась по мере считывания или записи информации. Сейчас, как известно, сервопривод оптических накопителей устроен противоположным способом: диск укреплен на неподвижной панели, а перемещается оптическая головка с лазерным диодом.

Модель отечественного оптического проигрывателя дисков «Луч-002» демонстрировалась на ВДНХ за два года до появления на мировом рынке компакт-диска. Миллионы телезрителей увидели лазерный проигрыватель и оптический диск, а также услышали, как он звучит. На него была записана мелодия из кинофильма «Мой ласковый и нежный зверь». Новинка вызвала значительный интерес со стороны различных предприятий, производящих бытовую электронику. Однако ни одно из них не располагало технологиями изготовления полупроводниковых лазеров и необходимых оптико-механических блоков. Нужна была кооперация. К сожалению, из-за междоусобной борьбы различных министерств за финансирование отечественные CD так и не увидели свет.

В 1980 году компании Philips и Sony представили новый стандарт лазерного диска — CD-DA (Compact Disk Digital Audio). Он определял способ записи и обработки звука, а также размер нового носителя — 12 см, который используется и сегодня. Почему именно таким был выбран диаметр диска? Существует версия, по которой 12-сантиметровый диск полностью вмещает Девятую симфонию Бетховена. За следующие 15 лет технология CD прошла путь от музыкальных дисков до универсального носителя хранения информации. Несмотря на то, что на сегодняшний день она исчерпала свои возможности и на смену ей пришли более совершенные носители (DVD, BluRay), CD будут активно использоваться еще несколько лет.

Стандарт DVD создавался довольно интересно. К концу 1994 года стали появляться сообщения о том, что компании Sony и Philips готовы представить новый носитель информации, созданный на основе технологии CD. Название носителя несколько раз менялось в процессе разработки, отражая основные намерения разработчиков на том или ином этапе: MMCD (Multi Media CD), HD-DVD (High Density Digital Video Disk) и HD-CD (High Density Compact Disk). Предполагалось, что проигрыватели новой системы будут совместимы со всеми существовавшими на тот момент носителями в формате CD. Однако обратной совместимости быть не могло — проигрыватели CD и CD-ROM не смогли бы воспроизводить диски MMCD.

Причина несовместимости объяснялась большим числом технических новшеств, справиться с которыми CD-устройства не могли. Во-первых, диск MMCD имел двухслойную структуру. Над обычным отражающим информационным слоем располагался еще один информационный слой — полупрозрачный. Расстояние между ними было 0,04 мкм, толщина каждого слоя — 0,05 мкм, что вдвое меньше, чем у CD. В остальном структура MMCD была та же — поликарбонатная подложка (1,2 мм) с одной стороны от информационного слоя и защитный лаковый слой (10 мкм) — с другой. Поверх последнего располагается этикетка (маркируемая поверхность).

Каждый слой MMCD-диска должен был нести в 6 раз больше информации, чем целый CD — 3,7 Гб. Всего на двухслойном диске предполагалось разместить 7,4 Гб. Такой большой емкости удалось достичь за счет более короткой длины волны излучения считывающего лазера — 0,635 мкм (против 0,78 мкм у накопителей CD), и более совершенной оптической системы. Новая оптическая система привода с такими параметрами позволила получить гораздо меньшее световое пятно. Последнее, в свою очередь, обеспечивает возможность уменьшения геометрических размеров питов (единиц записи информации) более чем в 2 раза, и расстояния между дорожками. При использовании компрессии по стандарту MPEG2 на таком диске можно разместить 135 минут видеозаписи вещательного качества.

Вскоре выяснилось, что не только Sony и Philips заняты разработкой нового оптического носителя информации высокой плотности. Группа крупнейших мировых компании во главе с Toshiba (Matsushita, Hitachi, Pioneer, Thomson, MCA, Time Warner и MCM) неожиданно для многих предложила свой стандарт на дисковый носитель, весьма напоминающий MMCD. Этот стандарт также имел несколько названий: SD-DVD (Super Density Digital Video Disk) и SDD (Super Density Disk). Основные параметры этой технологии совпадают с MMCD. SD-DVD тоже имел двухслойную структуру, однако она была реализована принципиально иначе. Две половинки диска (каждая толщиной 0,6 мм) склеивались между собой со стороны информационного слоя. Поэтому считывание такого диска могло производиться с обеих сторон.

Очевидно, что глубина расположения информационного слоя у SD-DVD получается вдвое меньше, чем у MMCD. Однако емкость каждой стороны оказывается больше — 5 Гб, т. е. 10 Гб на весь диск против 7,4 Гб у MMCD. Это в 15 раз больше, чем у обычного CD. Для записи видеофильмов предполагалось также использовать компрессию MPEG2.

Сходство новых стандартов, разработанных совершенно разными компаниями, не могло не вызвать различных замечаний и толков. Однако объяснялось все просто. Летом 1994 года консорциум крупнейших компаний индустрии развлечений Hollywood Digital Video Disk Advisory Group, включающий в себя Columbia Pictures, MGM, Disney, MCA/Universal, Paramount, Viacom и Warner Brothers, подготовил ряд предложений, касающихся новых носителей видео. Целью было значительно улучшить качество видеопродукции и максимально защитить авторские права на нее.

В связи с этим выдвинутые предложения были обсуждены с крупнейшими фирмами-производителями аппаратуры видеозаписи. В результате основными свойствами нового носителя должны были стать следующие:

· возможность записи на один диск полнометражного художественного фильма;

· качество изображения должно быть лучше, чем у любого существующего видеоаппарата, включая проигрыватель лазерных видеодисков;

· новые накопители должны быть совместимы со всеми существующими CD-устройствами;

· должна быть обеспечена возможность записи звукового сопровождения не менее чем на трех-пяти языках;

· запись должна быть защищена от пиратского копирования;

· должна быть предусмотрена возможность изменения формата записи, т. к. в будущем предполагается расширение рынка широкоэкранных фильмов;

· должна быть предусмотрена возможность записи на одном диске нескольких версий одного и того же материала с возможностью введения пароля.

 

Поскольку никто не был заинтересован в существовании двух схожих форматов, Hollywood Video Disk Advisory Group и Computer Industry Technical Working Group потребовали создать единый стандарт, отказавшись поддерживать как MMCD, так и SD-DVD.

В результате в сентябре 1995 года был создан единый стандарт, получивший название DVD. Через год появились DVD-ROM и DVD-Video, а в январе 1997 года проигрыватели, накопители и диски DVD были представлены общественности на выставке бытовой техники в Лас-Вегасе, США.

Первоначально накопители на оптических дисках создавались как устройства, способные лишь считывать информацию с носителей. «Запись» производилась изготовителем дисков путем штамповки поликарбонатных копий со стеклянной матрицы. Информация кодировалась микрорельефом на поверхности диска, при этом нулем являлся так называемый «пит» - углубление в материале диска, а единицей – ровный участок поверхности. Впоследствии появились технологии, позволившие потребителю производить сначала однократную запись на чистые диски-болванки, а потом и многократную перезапись таких дисков. Диски для однократной записи представляют собой такую же поликарбонатную пластину, как и CD-ROM, однако под отражающим слоем у них находится регистрирующий. Материал регистрирующего слоя обладает способностью темнеть под воздействием высокой температуры. При записи такого диска записывающий лазер избирательно нагревает элементы регистрирующего слоя, образуя на нем последовательность темных (которые потом воспринимаются считывающей головкой, как питы) и светлых участков.

Что касается дисков для многократной перезаписи, то у них в регистрирующем слое применяется особый класс материалов, которые способны при нагреве переходить из кристаллического состояния в аморфное и обратно, изменяя при этом свою отражающую способность.


Что касается устройства оптических накопителей, то оно не претерпело каких-либо значительных изменений с момента появления первого привода CD-ROM. Схема записи и чтения данных приведена на рисунке 10.

Рисунок 11. Принцип записи информации на оптический диск.

Одну деталь на этом рисунке необходимо пояснить. Для различения сигналов от записывающего и считывающего лазеров применяют разделение сигналов с помощью поляризации. Не вдаваясь в сущность этого способа, скажем лишь, что детектор, настроенный на прием горизонтально поляризованного сигнала, невосприимчив к вертикально поляризованному и наоборот.



Поделиться:




Поиск по сайту

©2015-2024 poisk-ru.ru
Все права принадлежать их авторам. Данный сайт не претендует на авторства, а предоставляет бесплатное использование.
Дата создания страницы: 2019-01-11 Нарушение авторских прав и Нарушение персональных данных


Поиск по сайту: