Эти расходомеры применяются для измерения расхода загрязненных жидкостей, известкового молока, диффузионного сока, сусла-самотека и т. п. Принцип действия приборов основан на зависимости уровня жидкости в сосуде от расхода при свободном истечении ее через калиброванное отверстие (щель) в дне или боковой
•стенке. Профиль и диаметр отверстия рассчитываются таким образом, чтобы указанная зависимость была линейной.
Уравнение расхода через отверстие в дне или стенке сосуда в
•общем виде выражается следующей зависимостью:
Используя уравнение (VIII.29), можно вывести зависимость между Q и Н для отверстия любой формы. Для получения равномерной шкалы прибора эта зависимость должна быть линейной:
Q = KH. (VIII.30)
где К — коэффициент пропорциональности.
К = Qmах/Hmах- (VIII.31),
Щелевой расходомер с калиброванным незатопленным отверстием (щелью) в стенке корпуса (рис. VIII. 16) представляет собой емкость — корпус /, разделенный перегородкой 4 с профилированной щелью. В левой части корпуса, куда подается измеряемая жидкость через подводящий патрубок, производится измерение ее уровня с помощью пьезометрической уровнемерной трубки 2 и измерительного прибора — дифманометра 3
Для измерения уровня жидкости могут применяться и другие типы уровнемеров.
Жидкость, поступающая в левый отсек корпуса, заполняет его, переливается через профилированную щель и через слив уходит в-приемник и далее — по назначению.
Другой тип расходомера с отверстием в дне сосуда (рис. VIII.17) состоит из приемника — сосуда переменного уровня 1, корпуса 2, выходного отверстия с калиброванной диафрагмой или соплом 3. Высота столба жидкости над калиброванным отверстием 3 измеряется с помощью уровнемера-дифманометра 4.
|
Щелевые расходомеры хорошо зарекомендовали себя при измерении сильно загрязненных и быстро кристаллизующихся жидкостей и растворов. Диапазон измерения 0,1—50 м3/ч; основная погрешность устройства в комплекте со в'торичным прибором ±3,5%. Приборы входят в систему ГСП.
ТЕПЛОВЫЕ РАСХОДОМЕРЫ
Тепловые расходомеры могут применяться при измерении небольших расходов практически любых сред при различных их параметрах. Кроме того, они весьма перспективны для измерения расхода очень вязких материалов (опары, теста, фруктовых начинок, паст и т. п.). Принцип действия их основан на использовании • зависимости эффекта теплового воздействия на поток вещества от массового расхода этого вещества.
Тепловые расходомеры могут выполняться по трем основным принципиальным схемам:
калориметрические, основанные на нагреве или охлаждении потока посторонним источником энергии, создающим в потоке разность температур;
теплового слоя, основанные на создании разности температур с двух сторон
пограничного слоя;
термоанемометрические, в которых используется зависимость между количеством теплоты, теряемой непрерывно нагреваемым телом, помещенным в поток, и массовым расходом вещества.
Выбор принципиальной схемы измерения зависит от измеряемой среды, необходимой точности, типа используемых термочувствительных элементов и режима нагрева. Для упруго-вязких пластичных веществ, какими являются опара и тесто, а также многие другие пищевые продукты, предпочтительным является измерение по схеме термоанемометра с постоянной температурой подогрева потока.
|
Чувствительными элементами термоанемометрического тепло-sore расходомера опары и теста (рис. VIII.18). являются резисторы R1 и R2, помещаемые (наматываемые) на стенке трубопровода на некотором расстоянии друг от друга. Манганиновые резисторы R3 н R4 служат для создания мостовой схемы, питаемой от источника напряжения Uпит. Сигнал разбаланса, пропорциональный изменению расхода, подается на электронный усилитель ЭУ, где усиливается и после этого управляет вращением реверсивного электродвигателя РД, который, производя перестановку.движка компенсирующего переменного резистора Rr, изменяет напряжение питания до тех пор, пока разбаланс в измерительной диагонали моста не станет равным заданному. Мерой расхода могут служить показания амперметра, ваттметра (на схеме не показан) или положение движка Rp.
С помощью тепловых расходомеров может быть обеспечена точность измерения расхода вязких продуктов ±2 —2,5%.
ВИХРЕВЫЕ РАСХОДОМЕРЫ
В настоящее время разработаны и имеют весьма широкие перспективы применения вихревые расходомеры, принцип действия которых основан на зависимости от расхода частоты колебаний давления среды, возникающих в потоке в процессе вихреобразования. Измерительный преобразователь вихревого расходомера (рис. VIII.19) представляет собой завихритель 1, вмонтированный в трубопровод, с помощью которого поток, завихряется (закручивается) и поступает в патрубок 2. На выходе из патрубка в расширяющейся области 4 установлен электроакустический преобразователь 3, воспринимающий и преобразующий вихревые колебания потока в электрический сигнал, который далее приводится к нормализованному виду, отвечающему требованиям ГСП.
Завихрения потока формируются таким образом, что внутренняя область вихря — ядро, поступая в патрубок 2, совершает только вращательное движение. На выходе же из патрубка в расширяющуюся область 4 ядро теряет устойчивость и начинает асимметрично вращаться вокруг оси патрубка.