Теорема.
Если прямая, проведенная на плоскости через основание наклонной, перпендикулярна ее проекции, то она перпендикулярна наклонной.
Доказательство.
Пусть AB – перпендикуляр к плоскости α, AC – наклонная и с – прямая в плоскости α, проходящая через основание С наклонной. Проведем прямую CA` параллельную прямой AB. Она перпендикулярна плоскости α. Проведем через прямые AB и A`C плоскость β. Прямая с перпендикулярна прямой CA`. Если она перпендикулярна прямой CB, то она перпендикулярна плоскости α, а значит, и прямой AC.
Обратная теорема о трех перпендикулярах
Теорема. Если прямая на плоскости перпендикулярна наклонной, то она перпендикулярна и проекции наклонной. Доказательство. Аналогично теореме о трех перпендикулярах если прямая с перпендикулярна наклонной CA, то она, будучи перпендикулярна и прямой CA`, перпендикулярна плоскости β, а значит, и проекции наклонной BC. Теорема доказана.
| |
Перпендикулярные плоскости
Две пересекающиеся плоскости называются перпендикулярными, если третья плоскость, перпендикулярная прямой пересечения этих плоскостей, пересекает их по перпендикулярным прямым. Плоскость α перпендикулярна плоскости β. Они пересекаются по прямой с. Плоскость γ перпендикулярна с и пересекает плоскости α и β по прямым a и b соответственно.
| |
Признак перпендикулярности плоскостей
Теорема
Если плоскость проходит через прямую, перпендикулярную другой плоскости, то эти плоскости перпендикулярны.
Доказательство
Пусть α - плоскость, b – перпендикулярная ей прямая, β - плоскость, проходящая через прямую b, и с – прямая, по которой пересекаются плоскости α и β. Следует доказать, что α и β перпендикулярны.
Проведем в плоскости α через точку пересечения прямой b с плоскостью α прямую a, перпендикулярную прямой с. Проведем через прямые a и b плоскость γ. Она перпендикулярна прямой с, так как прямая с перпендикулярна прямым a и b. Так как прямые a и b перпендикулярны, то плоскости α и β перпендикулярны. Теорема доказана.
Расстояние между скрещивающимися прямыми
Общим перпендикуляром двух скрещивающихся прямых называется отрезок с концами на этих прямых, являющийся перпендикуляром к каждой из них. Расстоянием между скрещивающимися прямыми называется длина их общего перпендикуляра. Оно равно расстоянию между параллельными плоскостями, проходящими через эти прямые.
| |
Расстояние между скрещивающимися прямыми. Свойства
Теорема Две скрещивающиеся прямые имеют общий перпендикуляр, и при том только один. Он является общим перпендикуляром параллельных плоскостей, проходящих через эти прямые. Доказательство Пусть a и b – данные скрещивающиеся прямые. Проведем через них параллельные плоскости α и β. Прямые, пересекающие прямую a и перпендикулярные плоскости α, лежат в одной плоскости (γ). Эта плоскость пересекает плоскость β по прямой a`, параллельной a. Пусть B – точка пересечения прямых a` и b. Тогда прямая AB, перпендикулярная плоскости α, перпендикулярна и плоскости β, так как β параллельна α. Отрезок AB – общий перпендикуляр плоскостей α и β, а значит, и прямых a и b. Докажем, что этот общий перпендикуляр единственный. Допустим, что у прямых a и b есть другой общий перпендикуляр CD. Проведем через точку С прямую b`, параллельную b. Прямая CD перпендикулярна прямой b, а значит, и b`. Так как она перпендикулярна прямой a, то она перпендикулярна плоскости α, а значит, параллельна прямой AB. Выходит, что через прямые AB и CD, как через параллельные, можно провести плоскость. В этой плоскости будут лежать наши скрещивающиеся прямые AC и BD, а это невозможно, что и требовалось доказать.
| |